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ABSTRACT 
Results for the application of an adaptive background 
model to the problem of detecting changes on a combs 
surface are reported. It is demonstrated that the combined 
search for uncapped brood cells in the current image and 
the background image increases the overall detection rate 
of the system. 
 
KEY WORDS 
Varroa, background, modeling, application, infrared, 
honeybee 
 
 
1.  Introduction 
 
One of the biggest threats for the native honeybee Apis 
melifera is the mite Varroa destructor [1]. The varroa 
mites are external honeybee parasites. As mites develop 
on the bee brood, which often results in a deformation of 
the bees and a drop in honey production, the infestation of 
a colony is a serious problem. Until now, it is not possible 
to cure an afflicted colony.  
There are different strategies for blocking the mites. For 
instance, the apiarists can use acaricide agents like formic 
acid. However, since the first acaricide resistant mites 
have been reported, there is an urge to develop alternative 
methods, in particular because acaricides may lead to 
unwanted residues in wax and honey. 
One of the most promising approaches is the rearing of 
resistant bees. Therefore, current research in the field of 
apiculture focuses on the genetic selection of hygienic 
bees [2]. Hygienic behaviour is characterized by three 
components: finding dead or damaged brood quickly, 
uncapping dead or damaged brood, and removing dead or 
damaged brood from the cells. The selection of hygienic 
bees has so far required a time consuming observation of 
the combs. Processing all the material that is typically 
recorded for a period of one week (24 hours a day) 
requires at least twice the time for analysis by a human 
expert. Therefore, it would be very helpful to develop 
algorithms for an automated observation of the combs as 
well as for the detection of the hygienic bees. In this 
paper, an image processing approach is presented which 
supports the human observer.  

 
 
2.  Experimental setup 
 
To develop such image processing algorithms a test 
beehive was installed at the Länderinstitut für 
Bienenkunde (Institute of Apiculture) in Hohen-
Neuendorf. In order to keep the ambient conditions near 
to the normal living conditions of the bees, the test comb, 
with 25 artificially varroa infested brood cells, was 
equipped with near-infrared illumination consisting of 
LEDs which are mounted on a wooden frame. The 
behaviour of the bees will not be influenced by this 
illumination, because bees are blind in this spectral range. 
The observation is done by infrared cameras. Fig. 1 shows 
a top view of the experimental setting. 
 

 
Fig. 1. Experimental setup from left to right: camera, 

illumination frame, comb 
 
To be able to identify an individual bee, they are 
manually labeled with numbered badges. The acquired 
image sequences are stored on a digital long-time video-
tape recorder using a resolution of 480x348 pixels. Image 
processing is done with the Open Computer Vision 
Library [3] and the C++ programming language. 
A first step towards an automatic recognition of hygienic 
bees is the detection of uncapped cells. If such a cell is 
found, a (backward) search for the initial opening can be 
performed to identify the bee(s) first active in the 
uncapping process. The main difficulty in the detection of 



open cells is the crowd of bees. The comb has to be 
populated with 2000 bees to keep the conditions quite 
normal. Hence, the open cells are often covered by bees 
and are only rarely visible. However, this can be handled  
if it is possible to find a background model appropriate for 
this application. 
 
 
3. Modeling image background 
 
The surface of the comb can be regarded as a static image 
background with bees moving or resting in the 
foreground. The event of uncapping a cell results in a 
change of the background, and thus a background model 
is required which allows for updates. Modeling an image 
background is a typical problem that emerges in many 
applications like visual surveillance and traffic monitoring 
[4, 5].  
The simplest approach is to initialize the background 
model with an image that does not contain any bees. 
However, a set of suitable rules is required in order to 
update all regions of the background currently visible.  
One adaptive method for background estimation is to 
calculate an average image by using the moving average 
of the gray values of each pixel in a limited sequence of 
images. This corresponds to a low-pass filter operation 
applied to the changing gray values. By choosing the 
values of the filter coefficients, we can determine which 
period of a temporal change will become part of the 
background. Another method of image background 
estimation is the principal component analysis (PCA) [6]. 
The update of such a model is computationally expensive, 
because a high dimensional PCA has to be performed. 
This method is not well-suited for monitoring bees on 
combs, because most of the time only small parts of the 
background are visible. Therefore, the principal 
components will reflect the foreground rather than the 
background. 
Statistical models seem to be more adequate for this comb 
model. Modeling the background statistics as a weighted 
sum of Gaussian functions [7] allows the system to adapt 
to different states of the background. In comparison to the 
moving average approach, the model recovers faster to 
previous states of the background. This situation 
frequently occurs when a bee has rested for a long time 
and starts moving again. Modeling the background with 
kernel functions can be seen as an extension of this 
approach [8]. Computational power and memory 
requirements still limit the application of statistical 
models.  Several approaches are published to overcome 
these limitations and allow real-time processing. Here the 
method of Butler et al. [9] is used. 
The basic idea of this method is to model the distribution 
of the changing gray values of each pixel with K clusters. 
A cluster ck is defined by its centroid zk and its weight ωk. 
The weights ωk are initialized with a default value ωnew  
and are updated for every new frame as it will be 
described later. The sum of the weights is always equal to 
one. For faster computation, all clusters have the same 

width, which is defined by a fixed threshold T. Fig. 2 
shows a background model for K=3 clusters. The weight 
of each cluster is illustrated by its height. If a new gray 
value gt of a pixel is available at time t, the pairwise 
distances between gt and the centroids of all clusters are 
compared. 
 

 
Fig. 2. Approximation of the gray value distribution of 

a single pixel with three clusters 
 
If the condition |zk-gt| < T is fullfilled, gt lies inside the 
cluster ck. The gray value gt is allowed to match only one 
cluster. If the clusters overlap then the condition may be 
true for more than one cluster, and in this case the cluster 
with the highest weight is chosen. If gt does not lie inside 
any cluster, it replaces the centroid of the cluster with the 
smallest weight.  
Then, the weights ωk of all clusters have to be updated. 
To indicate different points in time the weights will get a 
second index t and t-1. If a cluster ck was matched, its new 
weight ωk,t is calculated by Eq. (1). 
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The integer L controls the adaptation rate. The weights of 
the clusters that were not matched are decreased using Eq. 
(2). 
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Butler et al. suggested not to update the centroids for 
every new frame. The differences between the current 
gray value gt and the centroid zmatch of the matched cluster 
cmatch should be accumulated, i.e. the centroids should not 
be adjusted before this value exceeds L-1 or falls below   
–L. Finally, the weights have to be normalized such that 
their sum is 1 again. The (new) normalized weight is: 
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To decide whether a pixel should be labeled as 
foreground or as background a value P is calculated using 
Eq.(4). In other words, P sums only the weights of 
unmatched clusters that have higher weights than the 
matched cluster. 
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The pixel belongs to the foreground if the value of P is 
greater than a given threshold. Fig. 3 illustrates the 
application of this background estimation method for 
different times. The white circles in the second row mark 
the uncapped cells that are not visible in the current 
image. The details of the detection process are described 
in the next section of this paper. 
 

 
Fig. 3. Input images (first row), estimation of 

background (second row), and uncapped cells that are 
not visible in the input images (white circles) 

 
 
 
4. Detection of uncapped cells 
 
An obvious feature of the uncapped cells is their low gray 
value and the hexagonal structure. Fig. 4 illustrates a 
binarization which allows the extraction of cells. 
 

 
Fig. 4. Current frame (a), binary image (b), and edge 

image (c) 
 
From the resulting binary image, the contours of the 
objects can be extracted. For this the Canny edge 
detection algorithm [10] is used in combination with the 
Teh-Chin chain approximation algorithm [11]. Fig. 4c 
shows the result. After edge detection, five features are 
derived which describe each contour. The corresponding 
measures are calculated as follows. Eq.(5) defines a 
measure for the ratio of the main axes of the contour. This 
measure ra is calculated from the elements of the 
covariance matrix COV. 
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Eq.(6) is used to calculate the coordinates of a center 
point µ of the contour. The coordinates of µ are defined as 
the average coordinates of all contour points Pi. 
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The feature cdev describes the deviation from a circle. For 
that Eq.(7) calculates the mean square error of all points 
compared to a circle with center point µ and radius µr. 
The value of µr is the mean Euclidian distance between all 
contour points and the center point µ.. 
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Eq.(8) defines the compactness of the contour cmp as the 
ratio between the circumference of a circle Ucircle and the 
circumference of the contour Ucontour. 
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Eq.(9) gives a measure for the convexity cnv of the 
contour. It is defined as the ratio between the 
circumference of the convex hull Uhull and that of the 
contour Ucontour. 
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The convex hull is calculated using Sklansky’s  
3-coin algorithm [12]. 
 
 

 

5. Results 
 
Table 1 shows contour features for some typical cell 
contours. The hexagonal structure of an uncapped cell is 
reflected in high values for the convexity cnv and the 
compactness cmp, as well as a small deviation from a 
circle cdev. 
 

 
Table 1. Properties of some typical contours 

 
To investigate the performance of the contour features, a 
training set of 66 uncapped cells was used. The mean 
values of all features were arranged in a column vector 
mcell. Then the covariance matrix COV between all 
features was calculated. To decide whether a contour is an 
uncapped cell or not, the Mahalanobis distance was 
applied. If cu is a vector containing the contour features of 



an unknown contour, then the Mahalanobis distance 
dcell(cu) between the unknown contour and a hexagonal 
one is defined as 
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A threshold dT for dcell is defined empirically. Other 
contour classes are defined using the same approach. Fig. 
5 shows the detection results on a test set (71 contours of 
uncapped cells, ~200 contours of other objects). For a 
threshold distance dT>20.75, all open cells from the 
training set are classified correctly. Choosing dT=21, all 
negative examples are rejected. 

 
Fig. 5. Number of false positive and false negative 

detections as a function of the threshold distance dT 
given the Mahalanobis distances dcell for a training set 

of 71 uncapped cells and ~200 other contours 
 
In a second experiment a four minute movie was 
investigated. For comparison the uncapped cells are 
labeled by a human observer as soon as they become 
visible. The detection rate in this experiment was 90.4% 
with only 2 false positives. 24.3% of the automatically 
detected cells were found in the background image only. 
The remaining cells were detected from the current 
image. In most cases, the human observer was faster than 
the software detector. The mean delay between human 
and automatic detection was 4.9s. Fig. 6 shows the 
detection times for all cells. The circles mark the 
detection time for a human observer and the crosses the 
corresponding values for the detector. 
 

 
Fig. 6. Comparison between manual detection and 
automatic detection times since start of the movie 

 
 
 
6. Conclusions 
 
An adaptive background model has been described which 
can be used in the detection of uncapped cells on a comb 
crowded with bees. Background modeling is typically 
done in applications where most of the background is 
visible, whereas in this problem, the foreground objects 
dominate the image most of the time. The proposed 
background model can recover faster to previously seen 
states of the background, compared to conventional 
approaches as e.g. averaging. 
The typical hexagonal structure of complete open cells 
can be easily identified. While compactness, convexity, 
and ratio of the principal axes are invariant for scale, the 
parameters ‘deviation from circle’ and ‘mean distance 
from center’ are not. For a different experimental setup, 
these two parameters would have to be set according to 
the characteristics of the camera and the distance to the 
object.  
Detection of uncapped cells in a comb is a first step 
towards identifying hygienic bees. Once the position and 
the contour of an open cell are known, the movie can be 
searched backwards to find the initial opening and the 
bees involved. Tracking those bees might then be another 
application.  
The results of an experiment (illustrated in Fig.6) has 
shown that automatic detection  could replace the human 
observer. Although the observer can detect open cells 
more accurately even under partial occlusion, this 
capability is connected with high attention which will be 
lost with time. The need for high attention favors 
automation. 
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