Inbreeding effects of queen and workers on colony traits in the honey bee

K. Bienefeld, F. Reinhardt and F. Pirchner

Lehrstuhl für Tierzucht der Technischen Universität München, 8050 Frising-Weihenstephan, FRG

(received 24 October 1988, accepted 3 July 1989)

Summary — Inbreeding coefficients of queens and workers of 5581 controlled mated colonies were estimated. During a period of over 30 years inbreeding increased by 0.15% in queens and 0.06% in workers per year. The highest inbreeding coefficients were 44% in individual queens and 45% in individual worker groups, respectively. Using partial regression, the importance and consequences of inbreeding on colony traits were ascertained. Inbreeding seems to affect the two castes differently. Colony performance with regard to honey and wax is significantly depressed (−6% and −8%, respectively, per 1% inbreeding) by the inbreeding of the workers. In our material, inbreeding of queens did not affect colony efficiency except when workers were also inbred. Workers can compensate for inbreeding depression of queens, but the reverse is not true. Inbreeding of workers leads to calmer and less aggressive colony behaviour, whereas inbreeding of queens has the opposite effect. Swarming tendency increased with increased inbreeding of workers. In contrast, queens with moderate inbreeding have colonies with the highest swarming tendency. Honey production, calmness during examination and swarming tendency show significant interactions between the inbreeding level of queens and workers.

Apis mellifera — inbreeding — honey production — aggressiveness — swarming tendency

INTRODUCTION

Inbreeding is a powerful tool for creating genetic diversity but it depresses performance, particularly in components of reproductive fitness including fertility, viability and production traits (Dickerson, 1973). In the honeybee inbreeding depression was found both in workers (Brückner, 1975, 1980; Khischa, 1976; Kepena, 1976) and in queens (Hoopingarner and Farrar, 1959; Khischa, 1976; Moritz, 1982) for various traits. This explains the poorer efficiency (Plass, 1953; Cale and Gowen, 1956; Khischa, 1976) and altered colony behaviour (Plass, 1953).

However, these experiments give no information about the relative importance of inbreeding in queen and workers to colony traits, which are assumed to be affected by both castes simultaneously (Chevalet and Cornuet, 1982). In the present study a method is described for computing the inbreeding coefficients \(F \) in large sets of colonies with respect to characteristics in reproduction, under controlled mating conditions. Computing \(F \) for queens and workers of each colony
and relating them to recorded colony traits permits the separation of inbreeding effects of the two castes.

MATERIALS AND METHODS

The study is based on data collected from approved beekeepers organized in two bee breeding societies in Lower Saxony (F.R.G.) and a bee breeding society in Hamburg (F.R.G.). In addition to the results from "stud-books" from beekeepers (n = 96), the Research Institutes for Bee Breeding in Celle (Lower Saxony, F.R.G.), Kirchhain (Hesse, F.R.G.) and Lunz (Austria) provided data from their testing stations. The performance tests by beekeepers and the Bee Research institutes were carried out in the same manner without essential modifications during the period analysed. The honey yield was taken as weight difference of combs before and after extracting honey plus an estimate of honey left in the broodnest. Wax production was estimated by the number of honey and/or drone combs times a factor between 0.05 and 0.07 (depending on comb size). Aggressiveness (defensive behaviour – from very gentle to vicious), calmness during examination (running of the bees during examination), spring development (time when the super had to be given to the colony) and swarming tendency (occurrence of swarming symptoms and reaction of the colony to means of preventing swarming) were scored subjectively. The scoring system ranged from 4 (very good) to 1 (very bad). Intermediate marks (for example, 2.5) were possible (Table I).

For details of the performance test the reader is referred to the paper by Rütner (1972). The organisation of the breeding scheme has been described by Tiesler (1988). Only colonies (n = 5581) from controlled matings or artificial insemination were used in the analyses. The mating stations are located on islands along the North German coast. All are sufficiently far away from the mainland and from each other to maintain complete isolation from unwanted drones. At these "island mating stations" an average of 6 (varying from 4 to 10) colonies with sister queens (queen descended from one dam, who were also mated at an island mating station) provided the breeding drones.

Genetic relationship within and between colonies without inbreeding

The genetic relationship (a) between two individuals can be calculated as follows (Malécot, 1946).

\[a = \frac{(\Phi + \Phi')}{2} \tag{1} \]

where \(\Phi \) = probability of identity of maternal genes in 2 animals; \(\Phi' \) = probability of identity of paternal genes in 2 animals.

Two randomly chosen females (queens or workers; because of the large number of workers per colony the genetic relationship between 2 worker offspring of different colonies is

Table I. Measured colony traits.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Unit</th>
<th>n</th>
<th>x</th>
<th>s</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honey</td>
<td>(kg)</td>
<td>5342</td>
<td>24.1</td>
<td>13.9</td>
<td>0.0</td>
<td>99.8</td>
</tr>
<tr>
<td>Wax</td>
<td>(kg)</td>
<td>1724</td>
<td>0.86</td>
<td>0.33</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Aggressiveness</td>
<td>(P)</td>
<td>2770</td>
<td>3.73</td>
<td>0.63</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Calmness</td>
<td>(P)</td>
<td>2764</td>
<td>3.72</td>
<td>0.54</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Spring develop.</td>
<td>(P)</td>
<td>2177</td>
<td>3.42</td>
<td>0.69</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Swarming tendency</td>
<td>(P)</td>
<td>1534</td>
<td>3.50</td>
<td>0.69</td>
<td>1.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

P: Scored subjectively from 1 (worst) to 4 (best).
Inbreeding effects of queen and workers on colony traits in the honey bee

equivalent to the genetic relationship between 2 randomly chosen individuals from these 2 colonies) from 1 colony have the same dam \((\Phi = 0.5)\) but because of the multiple mating of their dam, possibly different paternal descent. Therefore at the island mating stations three values for \(\Phi^*\) are possible. The probability \((P)\) of the three possibilities depends on the number of drones per queen \((D)\) and the number of drone-producing queens \((S)\) at the island mating stations.

Possibility 1: Descent from the same drone (same gamete)

\[\Phi_1^* = 1, \quad P_1 = 1/D \]

Possibility 2: Descent from different drones of the same drone-producing queen (different gametes of the same sire, Polhemus et al., 1959)

\[\Phi_2^* = 0.5; \quad P_2 = (1 - 1/D) \cdot 1/S \]

Possibility 3: Descent from different drones, which come from different but related \((\alpha/s)\) drone-producing queens

\[\Phi_3^* = a(s)/2; \quad P_3 = (1 - 1/D) \cdot (1 - 1/S) \]

The average probability of identity of paternal genes \((\Phi^*)\) gives

\[
\Phi^* = \frac{\sum \Phi_i \cdot P_i}{\sum P_i} = \frac{1}{2} \left(\frac{1}{D} \right) \left(\frac{1}{S} \right) + \frac{1}{2} \left(\frac{1}{D} \right) \left(\frac{1}{S} \right)
\]

The genetic relationship between the drone-producing queen is on average the same as the relationship to be estimated.

\[
a(s) = \Phi_2^* (s)
\]

Since \(a(s)/2 = (0.5 + \Phi_2^* (s))/4\) and

\[\Phi_2^* = \Phi_2^*(s) \]

\(\Phi^*\) can be expressed as follows

\[
\Phi^* = \frac{1}{2} \left(\frac{1}{D} \right) \left(\frac{1}{S} \right) + \frac{1}{2} \left(\frac{1}{D} \right) \left(\frac{1}{S} \right)
\]

Which reduces, after some rearrangements, to

\[
\Phi^* = \frac{7S + 3D + DS - 3}{2(S + D + 3DS - 1)}
\]

In order to compute the average genetic relationship between two females from different colonies but identical paternal descent \((a^*),\) possibility 1 (same drone) has to be excluded, because drones only mate once. Therefore \(\Phi^*\) results as follows

\[
\Phi^* = \frac{1}{2} \left(\frac{1}{S} \right) \left(\frac{1}{a(s)} \right) + \frac{1}{2} \left(\frac{1}{S} \right) \left(\frac{1}{a(s)} \right)
\]

Like (7) eq. (9) included only the variables \(D\) and \(S\) so (9) can also be expressed as a function of these variables.

\[
\Phi^* = \frac{2S + 3D + DS - 2}{2(S + D + 3DS - 1)}
\]

Substitution of \(D = 8\) (Laidlaw, 1974; Woyke, 1985) and \(S = 6\) (notes from the bee breeding societies in Lower Saxony) in eqs. (9) and (10) gives

\[
\Phi^* = 0.3535; \quad a = 0.42675
\]

(both within colonies)

\[
\Phi^* = 0.2611; \quad a^* = 0.13057
\]

(both between colonies)

Computation of the coefficients of inbreeding (F)

Heijden et al. (1977) and Dempfle (1987) derived efficient methods to compute the numerator relationship matrix (NRM) for large sets of animals

\[NRM = M \cdot D \cdot M' \]

For our purposes only the diagonal elements \(1 + F_i\) (Henderson, 1976) of the NRM have to be calculated. \(F_i\) is the coefficient of inbreeding of animal \(i\) (queen or an "average worker"). The computing technique has been fully described by Bienefeld (1988a). \(M\) is a triangular matrix containing only unity in the diagonal and, in the case of animal \(i\) (row \(i\)),

\[0,5 + (jth row + kth row) \]

in the off diagonals. Animal \(j\) and \(k\) are the parents of \(i\). The elements of the diagonal matrix \(D\) are the theoretical variances of the deviation of the breeding values of the individuals from the true full sib means. These depend on the information available:
where F_s and F_D are the coefficients of inbreeding of the parents, which have to be calculated (and stored) first.

This method does not fit the characteristics of reproduction of the honey bee, because the paternal descent cannot be ascribed to a single diploid sire, but only to a mixture of gametes from related sires (sister queens). That means that the theoretical covariance (a) between related individuals is changed compared to normal diploids. Considering eqs. (11) and (12), the following values can be derived.

<table>
<thead>
<tr>
<th>Possibility</th>
<th>Value D</th>
</tr>
</thead>
<tbody>
<tr>
<td>neither parent known</td>
<td>1</td>
</tr>
<tr>
<td>sire (s) or dam (D) known</td>
<td>$0.5 + (1 - F_s) / 4$ or $(1 - F_D) / 4$</td>
</tr>
<tr>
<td>both parents known</td>
<td>$(1 - F_s) / 4 + (1 - F_D) / 4$</td>
</tr>
</tbody>
</table>

Inbreeding effects

The statistical model used to quantify the inbreeding effects of queen and workers was:

Model I

$$Y_{ijk} = u + Y_i + B_j + B_D + B_Q + B_{QR} + e_{ijk}$$

where Y_{ijk} = colony trait of the kth colony with coefficient of inbreeding (F^o) of the queen and coefficient of inbreeding (F^w) of workers, measured in the ith year by the jth beekeeper; u = population mean; Y_i = effect of the ith year ($i = 1-35$); B_j = effect of the jth beekeeper ($j = 1-56$); B_D = coefficient of inbreeding of the queen ($0\% - 44\%$) of the kth colony; B_Q = coefficient of inbreeding of the workers ($0\% - 45\%$) of the kth colony; B_{QR} = partial coefficient of regression of the colony trait on the level of inbreeding of the queen; B_{QW} = partial coefficient of regression of the colony trait on the level of inbreeding of the workers; e_{ijk} = random residual error.

By applying the following model, interactions between the inbreeding level of queen and workers within colonies can be isolated:

Model II

$$Y_{ijkm} = u + Y_i + T_j + B_{ij} + FL_{om} + FL_{iw} + FL_{om} + e_{ijkm}$$

where Y_{ijkm} = colony trait of the kth colony with a combination of inbreeding level m of the

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Diploids</th>
<th>Honeybee</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Full sibs *</td>
<td>0.5</td>
<td>0.42675</td>
<td>-0.07325</td>
</tr>
<tr>
<td>b) Paternal half sibs **</td>
<td>0.25</td>
<td>0.13057</td>
<td>-0.11543</td>
</tr>
<tr>
<td>c) Maternal half sibs ***</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Individuals from the same colony with the same paternal descent.
** Individuals from different colonies, but same paternal descent.
*** Not possible under controlled mating conditions since no second mating at another station is possible.
queen and level of workers, measured in the ith year by the jth beekeeper: F_i, B_j = as in model I; $F_{L_1} = \text{effect of the } m\text{th inbreeding level of the queen (} m = 1-5; \text{ FL}_{L_1} = \text{effect of the } i\text{th inbreeding level of the workers (} i = 1-5; \text{ FL}_{n1} = \text{effect of the interaction between the level of inbreeding of the queen (} n\text{) and worker (} 1\text{); } e_{\text{resid}} = \text{random residual error.}$

The inbreeding levels were divided as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Percentage of inbreeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>0 < <= 6.25%</td>
</tr>
<tr>
<td>3</td>
<td>6.25% < <= 12.50%</td>
</tr>
<tr>
<td>4</td>
<td>12.50% < <= 18.75%</td>
</tr>
<tr>
<td>5</td>
<td>> 18.75%</td>
</tr>
</tbody>
</table>

Some beekeepers run the performance testing at different locations within a year. The individual locations within a year and a beekeeper were neglected because colonies sharing the same location also had similar levels of inbreeding. By including the specific location in the model part of the inbreeding, effects are confounded with location effects, causing an underestimate of the inbreeding effects. The results with and without considering the location are quite similar, differing only in the level of significance (Bienefeld, 1988a).

The subjectively judged behavior and development traits were not normally distributed. For this reason calculation for these variables was done with e^{variable} transformed values.

RESULTS

Figure 1 presents the development of average inbreeding in both castes. The yearly increase of an average of 0.15% in queens and of 0.06% in workers is not linear, but is characterized by ups and downs of the level of inbreeding. The level, never exceeding 5%, is relatively low. The highest individual inbreeding coefficient was 44% in queens and 45% in workers.

All colony traits recorded in Table II are significantly influenced by the year and by the beekeeper. Honey and wax production of a colony is significantly reduced by inbreeding of the worker (140 g honey/percent inbreeding, 7 g wax/percent inbreeding), whereas the inbreeding of the queen does not influence these colony traits (Table II).

Inbred workers are significantly less aggressive and show more calmness during examination. Inbreeding of the queen has a significant effect on calmness during examination, but in the opposite direction. Spring development is not significantly influenced by inbreeding of the two castes.

Swarming tendency increases (a negative sign indicates a poorer classification, i.e. greater swarming tendency) significantly in workers as a result of inbreeding (Table II).

Honey production, calmness during examination and swarming tendency show significant interactions between the inbreeding levels of queen and workers (Table III). By considering this interaction in the model, the inbreeding effect of queens

![Fig. 1. Level of Inbreeding of Queens (-----) and Workers (---) from 1951-1984.](image-url)
Table II. Effect of inbreeding of queens and workers on colony traits (Model I).

<table>
<thead>
<tr>
<th>Colony trait</th>
<th>Environmental effects</th>
<th>Partial regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breeder</td>
<td>Year</td>
</tr>
<tr>
<td>Honey</td>
<td>44.3***</td>
<td>16.1***</td>
</tr>
<tr>
<td>Wax</td>
<td>11.0***</td>
<td>14.1***</td>
</tr>
<tr>
<td>Aggressiveness</td>
<td>3.6***</td>
<td>15.7***</td>
</tr>
<tr>
<td>Calmness</td>
<td>5.9***</td>
<td>22.6***</td>
</tr>
<tr>
<td>Spring develop.</td>
<td>3.0***</td>
<td>7.9***</td>
</tr>
<tr>
<td>Swarming tendency</td>
<td>3.5***</td>
<td>9.5***</td>
</tr>
</tbody>
</table>

*: significant at P < 0.05
**: significant at P < 0.01
***: significant at P < 0.001

Table III. Effect of inbreeding of queens and workers on colony traits (Model II).

<table>
<thead>
<tr>
<th>Colony trait</th>
<th>Environmental effect</th>
<th>Inbreeding levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breeder</td>
<td>Year</td>
</tr>
<tr>
<td>Honey</td>
<td>15.2***</td>
<td>43.0***</td>
</tr>
<tr>
<td>Wax</td>
<td>12.5***</td>
<td>10.4***</td>
</tr>
<tr>
<td>Aggressiveness</td>
<td>3.7***</td>
<td>13.6***</td>
</tr>
<tr>
<td>Calmness</td>
<td>5.7***</td>
<td>19.9***</td>
</tr>
<tr>
<td>Spring develop.</td>
<td>4.1***</td>
<td>7.7***</td>
</tr>
<tr>
<td>Swarming tendency</td>
<td>3.3***</td>
<td>9.3***</td>
</tr>
</tbody>
</table>

Q: Queen W: Workers
Q x W: Interactions Queen×Workers
*: significant at P < 0.05
**: significant at P < 0.01
***: significant at P < 0.001
on honey production and swarming tendency also becomes significant. As shown in Fig. 2 for honey production, the impact of inbreeding of queens is most conspicuous when the workers of a colony are also highly inbred. The LSQ-means (Figs. 3 and 4) of the other colony traits show no clear tendency. For calmness during examination, the means indicate (as in Table II) opposite inbreeding effects of queen and workers.

For swarming tendency, a medium inbreeding level of the queen is poorest, whereas the swarming tendency in workers increases more or less with increasing inbreeding level.

Fig. 2. LS-means for honey production.

Fig. 3. LS-means for calmness during examination.
* Exceeds the range (1–4) due to correction for environmental effects.
DISCUSSION

Both the development of inbreeding, as given in Fig. 1, and the relatively low level of inbreeding are typical for an "open population". In addition to imports of foreign queens, the beekeepers tried to limit inbreeding depression by "intra-family selection" and by occasionally sending virgin queens to island mating stations with non-related (with respect to the young queens) drone-producing queens (Bienefeld, 1988b).

The justifications for these breeding strategies are shown in Table II and Fig. 2. Inbred colonies produce less honey and wax, but it is important to note that this loss of efficiency is mainly caused by inbreeding of the workers. This influences the colony performance in two ways. First by less efficient (Brückner, 1975, 1980) and morphologically handicapped workers (Khilscha, 1976; Roberts, 1961); secondly by the mode of sex determination. The higher the level of inbreeding the higher the probability of homozygosity at the sex locus, which causes brood losses (Woyke, 1983).

Similar to our results, Plass (1953) found that colonies in which inbred queens headed non-inbred workers were comparable to normal colonies with respect to brood rearing. Inbreeding depression was only observed in the reverse situation (inbred workers, non-inbred queens).

Surprisingly, the inbreeding of queens does not affect honey performance. Khilscha (1976) reported fewer and lighter ovarioles in inbred queens, which may reduce their laying capacity. Cale and Gowen (1956) observed poorer honey production of colonies with inbred, but freely mated, queens (so workers were heterozygotes). But contrary to our situation, Cale and Gowen tested very highly inbred queens ($F = 55\% - 66\%$) under about 5 times more favourable honey flow conditions. Under this situation the laying capacity of
queens can be a limiting factor. Under unstable honeyflow conditions and a moderate inbreeding level of queens, non-inbred workers can compensate inbreeding depression of their dam, but queens cannot compensate inbreeding of their workers. Inbreeding of queens only leads to a reduction of performance if the workers of their colony are also inbred (Fig. 2).

Plass (1953) reported decreasing aggressiveness in inbred colonies. We found this tendency (lower aggressiveness, more calmness during examinations) only due to inbreeding of workers. The effect of inbreeding in queens was the reverse. Moritz (1986) observed a depression in physiological and metabolic reactions in inbred workers. Collins et al. (1987) reported, by comparing European and Africanized geographical types of honey bees, genetic differences with respect to defensive behaviour. They speculated that the different behaviour is caused by a greater responsiveness to alarm pheromones. If the threshold of response to the alarm pheromones is determined genetically, this threshold may be sensitive to inbreeding.

Queen pheromones are known to stabilize behaviour in honey bee colonies (Velthuis, 1977; Crewe, 1982). Hoffmann (1961) found queenless colonies more restless and aggressive. It is likely that, in addition to morphological defects (Hoopingarner and Farrar, 1959; Khischa, 1976), the pheromone output of inbred queens is reduced, causing a more irritable behaviour of their workers.

Plass (1953) reported a lower swarming tendency but a considerably higher frequency of supersEDURE in his highly inbred colonies. Contrary to these findings, we found an increasing swarming tendency due to inbreeding of workers. Considering the interaction between inbreeding level of queen and workers in the evaluation (Table II), also a significant queen effect was found. It has to be stressed that the individual columns in Figs. 2, 3 and 4 are based on different numbers of observations, which may give the impression of dissimilarities between the general tendency presented in Table II and the graphical presentation of special combinations of (particularly in the case of high) inbreeding level of queen and workers. This applies especially to the trait “swarming tendency” (Fig. 4) computed from a reduced data set only (Table I).

However, Fig. 4 indicates that the relationship between the level of inbreeding and swarming tendency is not linear, since the highest swarming tendency (lowest LSQ-means) occurs at medium (6.25%—12.5%) inbreeding of queens. Simpson (1958) suggested that swarming as well as supersEDURE is caused by a queen substance deficiency. Allen (1965) found weather and age of the queen influenced the production of queen cells and some evidence that older queens were more likely to be replaced than younger ones.

If the assumption of a relationship between inbreeding of queens and their pheromone production is correct, the differences between our results and the findings of Plass (1953) are reconciliable. Highly inbred queens (assumed to have very low pheromone production—like old queens) may entail supersEDURE, while a medium level of inbreeding (only reduced pheromone production) may promote swarming of the colony. SupersEDURE, discernible by extensive number of queen cells (Allen, 1965), is considered as a sign of little swarming tendency (Zander and Böttcher, 1979). This may explain the more favourable swarming tendency of colonies with highly inbred queens and the concomitant failure of the partial regression of swarming tendency of the colony on queen’s inbreeding to reach significance (Table II).
The increased swarming tendency of inbred workers is unexpected, because of the reduced vitality (Brückner, 1975) and (due to the mode of sex determination) smaller colony size. Insufficient hive space has usually been assumed to be a further cause of swarming (Simpson and Riedel, 1963). Not only did the absolute colony size affect swarming behaviour, but also worker concentration per unit (Free, 1968). Free (1968) found a dense worker concentration on the broodnest in small colonies and, possibly as a consequence of this, a tendency to swarm.

Résumé — Effets de la consanguinité des reines et des ouvrières sur les caractéristiques de la colonie d'abeilles. On a adapté au cas particulier de l'abeille une méthode développée par Heijden et al. (1977) et Dempfle (1987) pour calculer les coefficients de consanguinité dans de grandes populations. La consanguinité des reines et des ouvrières de 5581 colonies, issues d'accouplement contrôlé, a été ainsi calculée. Sur plus de 30 ans la consanguinité des reines a augmenté de 0,15% et celle des ouvrières de 0,06% par an (Fig. 1). Le coefficient individuel de consanguinité le plus élevé a été de 44% chez les reines et de 45% chez les ouvrières. En appliquant la régression partielle des caractéristiques de la colonie sur la consanguinité de la reine et des ouvrières d'une colonie, on a pu quantifier les conséquences de la consanguinité sur ces caractéristiques pour les deux castes séparément.

La production miel et de cire est atteinte en premier lieu par la consanguinité des ouvrières, de 6 et 8% respectivement par 1% de consanguinité. Ces caractéristiques de la colonie ne sont touchées par la consanguinité de la reine que si les ouvrières sont elles-mêmes fortement consanguines. Les ouvrières sont capables de compenser la dépression consanguine des reines, mais l'inverse n'est pas vrai (Fig. 1). La consanguinité des ouvrières rend la colonie plus calme et moins agressive, alors que la consanguinité des reines a l'effet inverse. La consanguinité des reines ou des ouvrières n'exerce aucune action sur le développement de la colonie au printemps (Tableau II).

La tendance à l'essaimage d'une colonie croît avec la consanguinité des ouvrières. Elle est par contre maximale avec des reines ayant une consanguinité moyenne. La modification du comportement de la colonie pourrait être due à une diminution de la production de phéromones par la reine, à une vitalité réduite et à une modification de la sensibilité des ouvrières aux phéromones. Des interactions significatives entre le niveau de consanguinité des reines et celui des ouvrières au sein d'une colonie ont été montrées pour la production de miel, pour l'agressivité durant l'ouverture des ruches et pour la tendance à l'essaimage.

höchste Inzucht-Koeffizient war bei einzelnen Königinnen 44% und bei einzelnen Arbeiterinnen-Gruppen 45%. Durch Anwendung der partiellen Regression der Volkseigenschaften auf die Inzucht von König und Arbeiterinnen eines Volkes konnten die Konsequenzen der Inzucht auf diese Volkseigenschaften für beide Kasten getrennt quantifiziert werden.

ACKNOWLEDGMENTS

We wish to thank F. Tiester (Landesverband für Bienenzucht Hannover and Weser-Ems), Professor Dr. J.H. Dustmann and Miss E. Engler (Niedersächsisches Landesinstitut für Bienenzucht in Celle, F.R.G.), Dr. V. Maul (Landesanstalt für Leistungsprüfungen in der Tierzucht—Abteilung für Bienenzucht—Kirchnaim, F.R.G.), Dr. H. Pichlacker (Höhere Bundeslehr- und Versuchsanstalt für Wein- und Obstbau mit Institut für Bienenkunde in Linz, Austria) and all beekeepers for providing the data. Financial support was provided by the Deutsche Forschungsgemeinschaft, Grant No. Pi 90-42.

REFERENCES

Frey J.B. (1968) Neue Entdeckungen über das Verhalten der Bienan, die gegebenenfalls Anwendung für die Bienenkultur haben. Apiculta 3, 1-6
Plass F. (1953) Inzuchtverwirkung und Heterosiesefekt bei der Honigbiene. Schriftenreihe des AID, Heft 66, Fortschritte in der Bienenzucht, pp. 49-68
Simpson J. (1958) The factors which cause colonies of Apis mellifera to swarm. Insects Soc. 5, 77-95