Geo HU Berlin Reference Database -- Query Results
toggle visibility Search & Display Options

Select All    Deselect All
  Record Links
Author (up) Krankina, O.N.; Pflugmacher, D.; Friedl, M.; Cohen, W.B.; Nelson, P.; Baccini, A. openurl 
  Title Meeting the challenge of mapping peatlands with remotely sensed data Type Journal Article
  Year 2008 Publication Biogeosciences Abbreviated Journal  
  Volume 5 Issue 6 Pages 1809-1820  
  Keywords spectral reflectance measurements; land-cover; satellite imagery; carbon; wetlands; modis; tree; accuracy; products; canada  
  Abstract Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peatland distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation) was significantly lower than the error of omission (underestimation) which means, that overall, peatlands were correctly classified as such in coarse resolution datasets but a large proportion (74-99%) was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with different types of surface vegetation suggested that improved mapping of boreal peatlands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near- and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.  
  Corporate Author Thesis  
  Publisher Place of Publication Krankina, ONOregon State Univ, Dept Forest Ecosyst & Soc, 321 Richardson Hall, Corvallis, OR 97331 U Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4170 ISBN Medium  
  Area Expedition Conference  
  Notes 393XZTimes Cited:0Cited References Count:55 Approved no  
  Call Number geomatics @ Krankina2008 Serial 254  
Permanent link to this record
Select All    Deselect All