(a) Institut für Physik-Humboldt-Universität zu Berlin (b) Università di Padova and INFN, Sezione di Padova

Probing light Yukawa at hadron colliders via HH production

Lina Alasfar (a) and Ramona Gröber (b)

RTG meeting 10.11.2020

Knowns and unknowns about the Higgs

The LHC will not be able to measure the width better than this ATLAS 1808.001191

State of the art

Current bounds on 1st and 2nd gen. Yukawa, model-dependent global fit

 $|\kappa_u| \le 570, \ |\kappa_d| \le 270, \ |\kappa_s| \le 13, \ |\kappa_c| \le 1.2$ de Blas et al '19

Ways for *direct* measurement

- Higgs kinematics: Higgs+jet transverse momentum distribution [Bishara Haisch, Monni, Re '16;Soreq, Zhu, Zupan '16]
- Higgs decays to photon and vector mesons [Bodwin, Pietrello, Stoynev, Velasco '13; Kagan, Perez, Pietrello, Soreq, Stoynev, Zupan '14; Alte, König, Neubert '16, ATLAS 1712.02758, CMS 2007.05122]
- Light flavour tagging [Perez, Soreq, Stamou, Tobioka '15; Brivio, Goertz, Isidori '15; ATLAS 1802.04329, CMS 1912.01662; Duarte-Campderros, Perez, Schlaffer, Soffer '18]
- Double Higgs production (Why?) [L.A, R. Corral Lopez and R Gröber '19]

Direct measurement of light quark couplings, sensitive to non-linearities, Simultaneous measurement of the trilinear coupling and light Yukawa !

SMEFT 101

$$g_{h\bar{q}q} = \kappa_q \, g_{h\bar{q}q}^{SM}$$

$$g_{hh\bar{q}q} = -\frac{2}{2\sqrt{2}v} (1 - \kappa_q)^2$$

+

Previous Work (prospects for HL-LHC) JHEP 11 (2019)088

For enhanced 1st gen. Yukawa, the quark annihilation channel becomes dominant

We studied the process

 $pp \rightarrow hh \rightarrow b\overline{b}\gamma\gamma$

But I am

a c-jet!

SMEFT bounds

How these bounds (in κ formalism) translate to SMEFT ?

Interesting for investigating NP models

Next step: Future hadron colliders

Why probing light quark coupling to Higgs via HH in Future colliders?

 $N = \int \mathcal{L}dt \cdot \sigma(pp \rightarrow hh) \cdot 2\mathcal{B}(p)$

- The cross-section scales like $\frac{\sigma(E_1)}{\sigma(E_2)} \sim \left(\frac{E_1}{E_2}\right)^2$ Future colliders will have higher energy!
- At higher eneries, the 2nd gen. quark PDF's become more abundant.
- Back of the envelop projected bounds on 1st gen. $|\kappa_u| < 450$, $|\kappa_d| < 212$

$$f(h \to \gamma \gamma) \cdot \mathcal{B}(h \to b\bar{b}) \cdot \epsilon$$

• Expect higher luminocity in the future, with systematics dropping with $\left(\int \mathcal{L}dt\right)^{-\frac{1}{2}}$ Maybe improved efficiency and flavour tagging

e.g. for a collider with E=27 TeV, we could expect 4 times more HH events that the HL-LHC

Many NP models could be probed by these colliders !

Backup plots

Simultaneous fit

Probing non-linear couplings