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Abstract

This paper �rst de�nes the concept of an iconic notation for a prop-

erty P by a notation providing decision criteria for P . This de�nition

distinguishes an iconic notation from a symbolic notation. The notion of

an iconic proof is then de�ned by an algorithmic translation of a symbolic

notation into an iconic notation. The de�ned concepts are illustrated

by examples from mathematics and monadic logic. The de�nitions and

examples then serve as a background for a discussion of the decision prob-

lem that asks for the possibility of an algorithmic translation of �rst-order

formulas into a proper iconic notation for the whole realm of �rst-order

logic.

Keywords: Iconic Logic · Diagrammatic Reasoning · Decision Problem

· Proof Theory

1 Introduction

The di�erence between iconic and symbolic logic and, more generally, between

iconic reasoning and reasoning according to inference rules has been drawn in

di�erent ways. One may, e.g., draw the distinction by distinguishing (i) the

kind of mental activity that is prevailing (seeing as vs. thinking), (ii) the kind

of expressions that are used (icons vs. symbols), or (iii) the way in which in-

formation is encoded (by features of expressions vs. merely by rules applied to

expressions). As a consequence of (iii), the peculiarities of iconic reasoning are

spelled out by the possibility of free rides (Shimojima (1996)), direct and indi-

rect interpretation (Stenning (2000)), multiple readings (Shin (2002), Macbeth

(2012)), operational iconicity (Stjernfelt (2011)), or observational advantages

(Stapleton & Jamnik & Shimojima (2017)). The account presented in this pa-

per rejects (i), speci�es (ii) and is in line with (iii). In addition to the e�orts

to spell out approach (iii), the paper puts forth that the peculiarity of iconic

expressions consists of providing decision criteria. These criteria are features of
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expressions that allow identifying the formal (logical or mathematical) proper-

ties in question. Expressions that provide these criteria are iconic in the sense

that they identify properties by their own properties. In the following, I �rst

outline and illustrate this approach and then apply it to the decision problem

in logic. In doing so, I will argue that undecidability proofs of �rst-order logic

are not conclusive. They do not rule out the possibility of a decision procedure

in terms of a procedure that converts �rst-order formulas to an iconic notation.

My purpose in relating iconicity to decidability is threefold: (α) to explain

Peirce's claim that `deduction consists in constructing an icon' (Peirce (1885,

182)), (β) to provide an account of iconicity that is independent of mental

activity or intuition and that applies to algebraic notations, and (γ) to argue

that the probative force of iconic reasoning in logic is stronger than hypothetical

informal reasoning regarding its limits.

2 Iconic Notation

Peirce distinguishes icon and symbol by the way in which the signi�ed is repre-

sented: by similarity or by convention. In the following, I con�ne the discussion

to mathematics and logic. In mathematics and logic, it is neither clear whether

expressions signify anything at all nor, if so, how to measure similarity. This is

why I propose an alternative to Peirce's distinction of icon and symbol. I use the

term `expression' (rather than `sign') as a neutral, general term of which icons

and symbols are speci�c variants. An expression is not an icon nor a symbol

per se. Instead, the classi�cation depends on what purpose it satis�es.

According to Peirce, `a great distinguishing property of the icon is that by the

direct observation of it other truths [. . .] can be discovered than those which suf-

�ce to determine its construction' Peirce (1993-58, 2.279). This quote expresses

the peculiarity of encoding information by icons (approach (iii) above). In the

case of mathematics and logic, I propose explicating what is `directly observed'

if `truths are discovered' in terms of decision criteria. A decision criterion is a

property of an iconic expression that it has i� the formal property in question

holds. A non-iconic, symbolic notation gives rise to the question whether a

certain formal property holds and this question is answered by translating the

initial symbolic expression to its iconic equivalent. Thus, I de�ne the di�erentia

speci�ca of an iconic expression with respect to its capability to provide decision

criteria for mathematical or logical properties (including relations).

De�nition 1 An expression Ψ is iconic with respect to property P if it has a

property that serves as a decision criterion for property P .

The de�nition of an iconic notation is likewise relative to the capability of

deciding certain properties:
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De�nition 2 A notation is iconic with respect to property P if it is a notation

for iconic expressions deciding P .

In contrast, symbols of a symbolic notation do not provide decision criteria.

Instead, they have to be reduced to iconic expressions of an iconic notation to

determine mathematical or logical properties.

Let me illustrate the distinction between symbolic and iconic notation by

two simple examples, one from arithmetic and one from logic. The next section

3 provides further examples.

Arithmetic expressions such as 3·(2+1)−6 > (4−1)·2−3 and 3·(2+2)−6 >

(4 − 2) · 2 − 3 do not provide a criterion to determine whether the property of

being greater than (>) holds for the arithmetic terms. There is no general

property common to all arithmetic terms that identi�es the relation between

the numbers expressed by the arithmetic terms. One must apply rules that

reduce the arithmetic terms to iconic expressions to determine the relation.

One way to do so is the reduction to unary notation. In this case, the �rst

expression reduces to ||| > |||, and the second, to |||||| > |. This makes it

possible for a machine to determine the property in question by a property of

the resulting stroke notation. In contrast to the symbolic notation of the initial

arithmetic expressions (using decimal numbers and arithmetic operations), the

unary notation is iconic with respect to the property of (in)equality, because it

provides a general criterion to determine the (in)equality of arithmetic terms by

correlating strokes.

In logic, the A,E,I,O-notation or, likewise, the modern notation of �rst-

order logic does not provide criteria to determine the validity of Aristotelian

syllogisms. However, Venn-Peirce-diagrams allow one to decide upon the logical

property of validity by a property of the diagrams: A syllogism is valid i� by

representing the premises the conclusion is also represented. Table 1 illustrates

how a valid syllogism (�rst syllogism) is distinguished from an invalid one (sec-

ond syllogism) by Venn-Peirce-diagrams. A,I premises have to be drawn prior

to E,O premises. If an area X is marked, one need not mark an area Y that

includes X.

3 Determining Impossibility

The decidability of formal properties in mathematics and logic typically con-

cerns the question of what is possible. Prominent examples are the solvability of

equations of a certain form (e.g., algebraic equations) by numbers of a certain

kind (e.g., rational numbers or radicals) or the provability of a formula from

certain axioms (e.g., the expression of Goldbach's conjecture or its negation
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Symbolic Notation Iconic Notation

Syllogism Premises Premises & Conclusion

∃x(Sx ∧Mx)

¬∃x(Mx ∧ Px)

¬∀x(Sx→ Px)

∃x(Sx ∧Mx)

¬∃x(Mx ∧ Px)

¬∃x(Sx ∧ Px)

Table 1: Symbolic vs. Iconic Notation of Syllogisms

within the language of Robinson Arithmetic (Q) from the axioms of Q). While

the possibility to solve an equation or to prove a formula can be demonstrated

by �nite means in solving the equation or proving the formula, the impossi-

bility to do so within a given calculus �rst and foremost means that applying

the rules of the calculus to solve an equation or to prove a formula does not

terminate. This situation raises the question of how it is possible to determine

this impossibility. This section provides examples for deciding impossibilities in

mathematics; section 6 takes up these examples to outline analogous strategies

for determining provability in �rst-order logic.

Questions concerning in�nity, such as the question of the non-terminating

application of rules, are not undecidable per se. The impossibility to compute

solutions of an equation within a calculus computing rational solutions might

be shown by the possibility to compute irrational solutions of the equation

within another calculus. Similarly, one might prove that a certain formula is

not provable within a correct logical calculus by the method of identifying �nite

counter-models if available.

However, changing the calculus is not necessary to prove unsolvability or

unprovability. Instead, the decidability of these properties depends on whether

a �nite pattern can be identi�ed that shows that the application of the rules

of a calculus will repeat ad in�nitum. The Euclidean division algorithm may

serve as a most simple example. Applied to the division of natural numbers, it

yields decimal numbers. The application may result in a �nite decimal number,
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such as in the case of 1 ÷ 4 = 0.25, or in a periodic decimal number, such as

in the case of 1 ÷ 3 = 0.3. The repeating pattern is induced by a repetition of

dividing 10 by 3 with a remainder 1, and this repetition can serve as a criterion

to decide that the rational number 1
3 has no �nite representation within the

decimal notation. Thus, the property of a rational number to be representable

by a �nite decimal number is decidable within the Euclidean division algorithm.

Therefore, the decimal notation is iconic with respect to this property even in

the case where no �nite representation of the initial rational number is available

in the decimal notation.

The decimal notation, in contrast, is not iconic with respect to the question

of whether equations of the form a2 = b with b ∈ N are solvable such that a ∈ Q.
Applying an algorithm to approximate the solutions within the decimal notation

(e.g., by Dedekind cuts) may yield an `irrational number', e.g., in the case of

b = 2. In this case, approximating the solution within the decimal notation does

not yield a repeating pattern. Thus, there is no criterion available that allows

inferring that the computation will go on forever.

Yet, this `irrationality' or lack of a �nite pattern is a property of the notation,

not of the number. Solving the equation a2 = 2 by computing regular continued

fractions does yield a periodic pattern: 1+ 1
2+ 1

2+ 1
...

, or [1; 2] in the short notation

for regular continued fractions. Since all `irrational' square roots have periodic

regular continued fractions and all rational numbers have �nite regular continued

fractions, this notation is iconic with respect to the property of being a rational

square root.

The notation of regular continued fractions, in turn, may seem irrational in

the cases of other numbers such as π. However, moving on to the more general

notation of irregular continued fractions, which also allows for partial denomi-

nators other than 1, yields again a repeating pattern such as 3 + 12

6+ 32

6+ 52

6+ 72
...

.

Determining the solvability of an equation by numbers of a certain kind

needs not reveal itself within a notation for numbers. One may also refer to a

pattern within the derivation of equations in an attempt to solve the equation

within a certain calculus. In this case, the iconic notation consists of sequences

of equations rather than of sequences of digits. The classical proof of the irra-

tionality of
√

2, for example, in fact proves that the attempt to solve (a
b )2 = 2

with a, b ∈ N inevitably runs in a loop, namely, to repeatedly solve an equation

of form c2

d2 = 2 with c, d ∈ N. There is no need to reconstruct this proof as an

informal proof of hypothetical reasoning using reductio ad absurdum. Instead,

one may reconstruct the proof on the basis of a general algorithm to decide

whether equations of the form (a
b )2 = x with x ∈ N have a solution such that

a, b ∈ N by either generating a solution or ending up with a repeating pattern.
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In contrast to the Euclidean division algorithm, this algorithm is not applied

to numbers but to equations involving letters. Thus, it does not yield repeat-

ing digits but repeating equations using an algebraic notation. This notation

is not iconic or symbolic per se. Instead, its iconicity depends on the property

in question and the fact of whether it is possible to determine this property by

means of a feature of the algebraic notation.

Peirce often emphasized the iconic aspect of an algebraic notation despite

its abstract use of letters and operational symbols.1 The decision procedure for

the possibility of constructing polygons in Euclidean geometry by the algebraic

notation nicely illustrates this. It makes evident the fact that diagrams are not

necessarily iconic, while the non-diagrammatic algebraic notation may serve as

an iconic notation. It is not possible to decide from a diagram of a polygon

whether it can be constructed with a straightedge and compass. However, the

question becomes decidable within the algebraic notation by the factorization

of polynoms over Q. An n-gon is constructable i� the degree of the cyclotomic

polynomial (cf. the �rst irreducible polynom with degree > 1 in table 2) in the

factorization over Q of the n-th unit root is a power of 2 (cf. table 2, which

underlines the degree in question, showing that the pentagon can be constructed,

while the heptagon cannot).

The solution of decision problems of Euclidean geometry is an example in

which one has to change the calculus (operations with a straightedge and com-

pass vs. factorization of polynomials) and its language (geometrical �gures vs.

polynomials) by transforming constructions with a straightedge and compass

into expressions of nested square roots (= constructible numbers). The opera-

tions of the Euclidean calculus are embedded in the algebraic calculus, meaning

that more is decidable in the latter than in the former. This makes it possible

to identify the limits of the Euclidean calculus.

In section 6, I draw an analogy between deciding logical properties in �rst-

order logic and determining the solvability of polynomials by algebraic numbers

of a certain kind (e.g., by radicals and, in the case of radicals, by constructible

numbers). For this sake, it is important to note that the algorithm used to de-

termine the solvability of unit roots by constructible numbers is, in fact, twofold:

The �rst step is the factorization over Q; the second step is the application of

Galois theory, which computes possible types of solutions from the irreducible

polynomials generated in step 1. By Galois theory, minimal polynomials can

be generated from the cyclotomic polynomial, those minimal polynomials be-

ing solved by the real part of the �rst primitive unit root (= the real part of

1Cf. the continuation of the quote above from Peirce (1993-58, 2.279):

This capacity of revealing unexpected truth is precisely that wherein the util-

ity of algebraical formulae consists, so that the iconic character is the prevailing

one.
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Symbolic Notation Iconic Notation

x5 − 1 = (−1 + x)(1 + x+ x2 + x3 + x2·2)

x7 − 1 = (−1 + x)(1 + x+ x2 + x3 + x4 + x5 + x2·3)

Table 2: Symbolic vs. Iconic Notation of the Construction of Polygons

the point of the �rst edge in the �rst quadrant in the �gures of table 2 with

imaginary part > 0). The degree of these minimal polynomials is a power of

two i� the degree of the cyclotomic polynomial is a power of two. Thus, the

real part of the �rst primitive unit root is a constructible number i� the degree

of the cyclotomic polynomial is a power of two. This determines the question

of the possibility to construct a regular polygon because this question can be

reduced to a question of whether the real part of the �rst primitive unit root is

a constructible number.

For our later discussion, it is important to note that the application of Galois

theory does not presuppose the whole realm of the complex numbers C; the
decision procedure does not make use of a complete linear factorization over C.
Instead, Galois theory investigates formal properties of polynomials and internal

relations between their solutions and deduces the kind of their possible solutions

hereof. It explains why properties of polynomials that are irreducible over Q
allow determining the formal properties in question. Thus, it makes it possible

to interpret a certain normal form notation (factorization over Q) as an iconic

notation, hereby making super�uous a complete factorization in linear factors

and their localization within C.

I argue in section 6 that one can likewise elaborate on a twofold algorithm in

�rst-order logic: one that results in disjunctions of conjunctions of so-called pri-

mary (anti-prenex) formulas in �rst-order logic (FOLDNF), which corresponds

to factorization into irreducible polynomials over Q, and one that ensures that

the resulting FOLDNFs are su�ciently decomposed to read o� logical properties
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such as satis�ability. Prior to the enumeration of concrete models, the structure

of possible models is thus investigated by identifying properties of decomposing

normal forms and of their derivations.

4 Iconic Proofs

A decision problem is �rst and foremost the problem of a symbolic notation:

this notation does not provide decision criteria. The solution of a decision prob-

lem speci�es an algorithmic equivalence procedure transforming initial symbolic

expressions φ into iconic expressions ψ. This procedure must preserve the prop-

erty in question; it is an equivalence procedure with respect to this property. I

de�ne iconic proofs as results of decision procedures in terms of reducing initial

expressions φ to iconic expressions ψ:

De�nition 3 A proof is iconic with respect to property P if it reduces initial

expressions φ to iconic expressions ψ by means of an algorithmic equivalence

procedure to determine P .

I already sketched four examples of iconic proofs: (i) reducing arithmetic ex-

pressions to stroke notation to decide (in)equality, (ii) converting the symbolic

notation of syllogisms to Venn-Peirce-diagrams to decide logical (in)validity, (iii)

translating decimal numbers into continued fractions to decide (ir)rationality,

and (iv) embedding diagrams of polygons drawn by hand in factorized polyno-

mials to decide the constructibility of polygons. Iconic proofs are essentially

heterogeneous since they start from symbolic expressions and result in iconic

expressions. This process makes a property that is only implicitly represented

by rules governing the initial expression explicit by providing identity criteria

for the property in question. It is this di�erence in representation that matters

for iconic proofs.

Iconic proofs can be opposed to axiomatic proofs. While iconic proofs apply

themethod of analysis in terms of starting from what is in question and resulting

in providing the evidence for the property in question, axiomatic proofs apply

the method of synthesis in terms of starting with what is taken for granted and

deriving a proposition to prove. The axioms of a negation complete axiomatic

system that (dis)proves a proposition stating property P i� its equivalent iconic

proof procedure (dis)proves that P holds encodes implicitly what the iconic

procedure identi�es explicitly. The axiom-schemas of so-called Baby-Arithmetic

and an equivalent iconic proof procedure provide an example hereof. Baby-

Arithmetic decides variable-free ∆0-formulas φ by logically deducing either φ or

¬φ from the axiom-schemas, whereas the iconic procedure translates arithmetic

terms φ to icons ψ of an unary notation.
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One might question whether axiomatic proofs are able to do justice to the

feature of deductive reasoning, namely, to show that a certain property nec-

essarily holds, since all they show is that certain propositions (theorems) are

derivable from other propositions (axioms) by certain rules. Iconic proofs, how-

ever, do justice to the necessity of deductive reasoning by making evident that

the formal property in question necessarily holds due to nothing more than the

possibility to represent it. Deductive reasoning is necessary not in some dubi-

ous metaphysical sense but due to the possibility to reduce the representation

of properties to icons, which by their properties determine the property in ques-

tion. I take this as the reason for Peirce's reduction of deductive reasoning to

the construction and manipulation of icons, Peirce (1885, 182):

The truth, however, appears to be that all deductive reasoning,

even simple syllogism, involves an element of observation; namely,

deduction consists in constructing an icon or diagram the relations of

whose parts shall present a complete analogy with those of the parts

of the object of reasoning, of experimenting upon this image in the

imagination, and of observing the result so as to discover unnoticed

and hidden relations among the parts.

Any iconic proof, however, is based on an equivalence procedure. That this

procedure preserves the property in question cannot, in turn, be proven by an

iconic proof. A correctness and termination proof of the algorithm, proving

that all its transitions preserve the property in question, and, in fact, result in

an iconic expression, alludes to the understanding of the rules laid down and

is inevitably informal (non-algorithmic).2 One has to understand transitions

between di�erent possibilities to express the same (with respect to a certain

property in question). Meta-algorithmic proofs are based on analytic judge-

ments concerning the concepts in question and the possibility to present them.

We explicate our understanding of natural numbers and the operations applied

to them if we convert 2 + 2 via ||+ || and (||)(||) to ||||. First, expressions of the
decimal notation are replaced by expressions of unary notation, which shows

that natural numbers are used to count. Then the operation of addition is

applied in terms of an operation computing units of counting by concatenating

them. Finally, properties of the notation that merely stem from the speci�c way

of computation are eliminated to express the result unambiguously. In doing

so, it is shown that 2 + 2 is equivalent to 4 and the way that this is shown

explicates the understanding of the initial symbolic expression 2 + 2. Likewise,

2This is even true if (algorithmic or handmade) formalization is involved in correctness or

termination proofs like in veri�cation. This is so, because the correctness of the formalization

has, in turn, to be proven and such a proof cannot be other than informal. Thus, the necessity

of an informal proof is merely shifted. The same applies to undecidability proofs based on the

algorithmic formalization of Turing machines, cf. section 5, p. 12.
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we explicate our understanding of a proposition and operations applied to them

if we convert ¬¬P via ¬¬(T -P -F ) and T -F -T -P -F -T -F to T -P -F . The �rst

step makes explicit that propositions are capable of being true (T ) and false

(F ); the second step applies negation as an operation computing truth values

by inverting them; the third step eliminates truth values merely produced in

the computation process. Thus, it is shown that ¬¬P is equivalent to P and

the way that this is shown explicates the understanding of the initial symbolic

expression ¬¬P .
Thus, iconic proofs serve to explicate mathematical or logical properties by

an analytical, stepwise process that makes implicit knowledge explicit. Trans-

formation of an arithmetical expression to stroke notation, translation of the or-

dinary, linear notation of syllogisms into Venn-Peirce-diagrams, writing square

roots in regular continued fractions or encoding the construction of geometrical

�gures by algebraic formulas explicate our understanding of the initial symbolic

expressions by an iconic proof procedure. Iconic proofs extend explicit, not im-

plicit, knowledge. When they involve a stepwise, analytic process of converting

symbols to icons, their understanding involves thinking ; when they involve an

identi�cation of properties of resulting icons, their understanding involves aspect

seeing (cf. account (i) in section 1).

5 Undecidability Proofs

While iconic proofs can be opposed to axiomatic proofs, meta-algorithmic proofs

that prove (or explain why) a given decision procedure generating iconic proofs

achieves what it purports to achieve can be opposed to meta-mathematical

undecidability proofs.

While meta-algorithmic proofs argue that a certain given procedure is, in

fact, a correct and terminating decision procedure for a property in question,

meta-mathematical undecidability proofs argue that a certain decision problem

cannot be solved. The informal reasoning of the former is based on explicating

given rules and what follows from applying them, while the reasoning of the

latter is not only informal but necessarily hypothetical since it is argued for the

impossibility to de�ne a decision procedure without considering a concrete pro-

cedure for a property in question. This kind of impossibility proof is opposed to

the impossibility proofs sketched in section 3 that are based on decision proce-

dures distinguishing what is possible and what is not possible by iconic proofs.

Instead, undecidability proofs argue that an iconic procedure is impossible for

certain properties. Thus, meta-mathematical undecidability proofs purport to

prove the limits of an iconic conception of proofs.

The all-important di�erence between undecidability proofs and correctness

proofs of a given decision procedure is the application of the diagonal method.
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Meta-algorithmic correctness proofs prove that a certain property expressed

by initial symbolic expressions holds i� a certain property of the �nal iconic

expression holds; they intend to prove an equivalence. Undecidability proofs,

in contrast, prove that this equivalence is impossible to obtain by whatever

algorithm. The method used to prove this is the diagonal method; it reduces

the assumption to absurdity that an equivalence between a property in question

and some computable characteristic function exists.

Let me �rst illustrate the application of the diagonal method in the case of

the undecidability proof of the halting problem. In contrast to undecidability

proofs of �rst-order logic, this undecidability proof is independent of expressing

properties in question by propositional functions within a logical symbolism. It

is only this latter feature that I question. Thus, I neither question the reliability

of the diagonal method in general nor the validity of undecidability proofs ap-

plying this method as long as they do not involve expressing formal properties

by propositional functions.

I take for granted that any decision procedure is de�nable by a Turing ma-

chine (Turing's thesis) and that Turing machines are encoded by their numbers.

In the case of the halting problem, the property in question is the property that

an arbitrary Turing machine n halts if started with an arbitrary input k. The

diagonal method reduces the possibility that this property is decidable by a hy-

pothetically assumed universal Turing machine H to absurdity by considering

the hypothetical case that the halting machine H determines this property for

a machine X involving H. To apply the diagonal method, X must involve not

only H but additionally a machine that ensures self-application and a machine

that inverses the result of H. Thus, let us de�ne X by CHD, i.e., the composi-

tion of a copy machine C, the halting machine H and the dithering machine D,

cf. Boolos & Burgess & Je�rey (2007, 39f.). C copies the input k and returns

the pair (k, k) to H, which returns 1 if the machine with the number k halts if

started with input k and 2 if it does not halt if started with k. D is a dithering

machine that does not halt if started with 1 and otherwise halts. From these

de�nitions, it follows that a machine CHD that starts with its own number

would not halt i� H returns the value 1 to D, which contradicts the assumption

that H computes the halting function for any arbitrary machine. Since C and

D are known to exist, the assumption that H is a universal machine computing

the halting function even for a case such as CHD started with its own number

cannot be true. Therefore, there is no Turing machine H such that, for any ar-

bitrary Turing machine M , H returns 1 i� M halts if started with an arbitrary

input k and 2 i� M does not halt if started with k.

This reasoning is informal and hypothetical because no machine H is de�ned

in terms of a concrete Turing machine. The existence of such a machine H or,

more precisely, the de�nability of H is only hypothetically assumed, and this as-
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sumption is reduced to absurdity by considering a speci�c case of self-application

that contradicts the assumption of a universal machine that computes a prop-

erty in question for every machine, including machines that include this very

machine in question. Thus, this undecidability proof, in fact, is an unde�nabil-

ity proof proving that a certain function or property cannot be de�ned by a

computable function.

There are many other applications of the diagonal method in mathematics,

theoretical informatics or mathematical logic that prove the impossibility to

de�ne a property, a number or a function in a certain way without implying to

express what is in question within the language of �rst-order logic. All these

proofs may legitimately be analysed as proofs that limit the realm of decidability

and, thus, the realm of iconic proofs. In the following, I argue that the same

does not apply to undecidability proofs of �rst-order logic (the so-called Church-

Turing theorem). I con�ne my argument to a standard proof based on Turing

machines (in short, `Turing's proof', although I do not distinguish between

Turing's original proof and modern variants of it). The question is whether

Turing's proof proves that it is impossible to specify a procedure that determines

the property of �rst-order validity (or, likewise, �rst-order provability or other

inter-de�nable properties such as �rst-order satis�ability) by iconic proofs.

Turing proves (or, more precisely, purports to prove) that the halting prob-

lem is decidable if �rst-order logic is decidable. He does so by specifying an

algorithm that encodes Turing machines (including their inputs and con�gura-

tions) by propositional functions of �rst-order logic. He then intends to prove

a Lemma that states the equivalence between a property of Turing machines

in question, e.g., halting, and a property of the formula Un(M) designed to

encode it, e.g., provability of Un(M). This part of his proof is nothing but an

example of the informal reasoning for the correctness of a given algorithm. If

this meta-algorithmic proof is valid, deciding the provability of �rst-order for-

mulas Un(M) could be done to solve the halting problem. The halting machine

H would then consist of the composition TFOL of a translation machine T

that translates the code number of a Turing machine M and the number of its

input to the respective logical formula Un(M) and of a decision machine FOL

for �rst-order logic that returns 1 if Un(M) is provable and 2 if not. However,

since the halting problem is known to be unsolvable, the decision problem must

be unsolvable given Turing's Lemma.

Yet, Turing's proof of his Lemma does not consider that the Lemma must

also hold in the diagonal case in which CTFOLD is started with its own number

and FOL processes the formula Un(CTFOLD). Instead, his proof of the direc-

tion `If the formalization Un(M) of machine M is provable, then M halts' rests

on the general principle that any intended interpretation of a provable formula
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is true3 without discussing the application of this principle to diagonal cases.

Turing's Lemma as well as his principle are strong universal statements that do

not allow for any exception if his proof shall work. His principle does not follow

trivially from the correctness of �rst-order logic since the correctness of �rst-

order logic implies that intended interpretations obey the semantic principles of

�rst-order logic and, thus, are well-de�ned admissible interpretations. However,

it is questionable whether the intended interpretation of Un(CTFOLD) is ad-

missible in the speci�c diagonal case in which CTFOLD is started with its own

number and FOL decides Un(CTFOLD). Instead, provability and truth nec-

essarily fall apart in this case according to the reasoning in the undecidability

proof of the halting problem. This outcome could be used as a criterion for the

inadmissibility of the intended interpretation instead as a criterion for the non-

existence (or impossibility) of a machine FOL. One might intend to interpret

Un(CTFOLD) as a statement about the behaviour of CTFOLD started with

its own number, but it is this intention that is inconsistent, not the assumption

of a well-de�ned machine FOL that, after all, is concerned with formulas and

not their interpretation.

Turing is satis�ed with having laid down rules how to interpret Un(M) as

a statement about the behaviour of the formalized machine, hereby implicitly

(without further argument) presuming that these intended interpretations are

also admissible in the hypothetical diagonal case. However, one must consider

that the method of diagonalization is designed to show that certain equiva-

lences do not hold because it is impossible to express (or de�ne) certain func-

tions within a certain framework. The equivalence in question in Turing's proof

does not concern the de�nability of a machine FOL but Turing's Lemma and,

thus, the correctness of the algorithm of T in respect to expressing a property

of Turing machines by a logical property of the resulting formula Un(M). As

a consequence, the question arises whether one can presume that the intended

interpretations of the propositional functions involved in Un(M) indeed do ex-

press the behaviour of CTFOLD if started with its own number. Turing's

informal reasoning for his Lemma does not prove this, since it simply presumes

the admissibility of his interpretations (and, thus, assumes what is in question).

Instead of inferring that �rst-order logic is undecidable, one might well reject

the hypothetical assumption that the halting function (or, more speci�cally, a

3In Turing's words, Turing (1936, 262):

If we substitute any propositional function for function variables in a provable

formula, we obtain a true proposition.

This is the �rst sentence of his proof of his Lemma 2, which concerns one direction of the

equivalence stated in his Lemma. The whole proof of Lemma 2 consists of only two sentences.

The second sentence simply applies Turing's general principle to Un(M) and its intended

interpretation. Modern variants, though di�ering in details, do not essentially di�er from

Turing's original proof, cf., e.g., Boolos & Burgess & Je�rey (2007, 130).
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Turing-computable function for �rst-order provability) is expressible by formu-

las Un(M) generated by a Turing machine T because diagonal cases such as

processing Un(CTFOLD) when CTFOLD is started with its own number rule

out inferring that CTFOLD started with its own number halts if FOL proves

the formula Un(CTFOLD).

Unlike the undecidability proof of the halting problem, the undecidability

proof of �rst-order logic does not show that a Turing machine FOL is not de�n-

able. The mere assumption of this machine is not inconsistent; the inconsistency

arises only if Turing's Lemma is conceded. One might consider a machine FOL

and reject the possibility to apply its decisions to decide the halting problem

in cases involving interpretations of a problematic self-application. From the

viewpoint of an iconic logic, this is a most reasonable option. The notation

of �rst-order logic is based on the concept of propositional functions, not on

the concept of computable functions. The iconic conception of proof identi�es

computable properties or functions by properties of iconic expressions, not by

propositional functions.4 Thus, it may well be that �rst-order logic is not a suit-

able iconic notation for properties of Turing machines or computable functions

in general.

In the case of Church's proof, similar problems arise if one considers ex-

pressing recursive functions within a language based on �rst-order logic. The

problem with Church's proof is not the proof that if FOL is decidable, Robinson

Arithmetic Q is decidable. Instead, the problem is the underlying proof that

Q is undecidable. This proof is based on the `theorem' that recursive functions

are expressible by Σ1-formulas within the arithmetic language LA of Q that is

based on the language of �rst-order logic. The question is whether this so-called

theorem also applies to expressing the diagonalization of a hypothetically as-

sumed decision function for Q-provability in LA. It may well be that provability

in Q is de�nable by a recursive function but that this is not expressible within

LA due to the diagonal case. The informal proof of the so-called theorem that

any recursive function is expressible in LA is not conclusive for the same reason

4 The idea that propositional functions are not suitable to express computable formal

properties to a full extent can be traced back to Wittgenstein (1994, 4.126):

Formal concepts [e.g., `x is provable'] cannot, in fact, be represented by means

of a [propositional] function, as concepts proper can. For their characteristics,

formal properties, are not expressed by my means of functions. The expression

of a formal property is a feature of certain symbols. So the sign for the charac-

teristics of a formal concept is a distinctive feature of all symbols whose meaning

fall under the concept.

Wittgenstein rejects expressing diagonal cases by propositional functions, cf. his distinction

of operations and functions (Wittgenstein (1994, 5.251)) as well as his analysis of Russell's

Paradox (Wittgenstein (1994, 3.33-3.333)). He also conjectured that �rst-order logic is de-

cidable and stuck to this conjecture throughout his life, even after he was confronted with

Turing's proof, cf. Lampert (2019).
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that holds for the proof of Turing's Lemma: it is not shown that the proof also

holds for hypothetical diagonal cases. Any generalization, inductive or other,

presumes similarity of cases, which is not given; for more details, cf. Lampert

(2020).

Undecidability proofs for FOL are underdetermined. They do not limit the

possibility to decide properties of logical formulas such as their provability by

iconic proofs. Instead, undecidability proofs of FOL, in fact, prove that if FOL

is decidable, the decision procedure cannot be used to solve certain undecidable

problems such as the halting problem, because this application cannot be correct

in the diagonal case.

6 Towards a Solution to the Decision Problem

Instead of limiting the possibility to specify an iconic decision procedure for

FOL by hypothetical reasoning, one should rather attempt to spell out a de-

cision procedure. The probative force of reasoning based on nothing but a

given equivalence procedure within �rst-order logic that applies well-known and

uncontroversial rules and culminates in uncontroversial criteria of logical proper-

ties is stronger than any hypothetical reasoning based on questionable intended

interpretations of logical formulas related to properties that exceed logic and

generalized to cover diagonal cases.

In the following, I sketch some principles of a decision procedure I worked

out for FOL and implemented in a program called the FOL-Decider. The details

of this procedure and the proof of its correctness and termination are given else-

where, cf. Lampert (2020). This paper argues that the conceptual framework

and the examples given in sections 2 to 4 provide a detailed heuristic for what

one is looking for.

The algebraic tradition in mathematics was the predominant paradigm for

the emergence of modern logic. This notably a�ected propositional logic and

monadic �rst-order logic. Similar to factorization in algebra, disjunctive nor-

mal forms (DNFs) in propositional logic or Venn-Peirce-diagrams in monadic

�rst-order logic can be seen as a decomposition of formulas to the e�ect that

the formal properties in question are identi�ed from the resulting decomposed

structure. Linear factorization, e.g., identify zeros, DNFs and Venn-Peirce-

diagrams can be used to identify models. The question is how possible is it to

generalize this account to the whole realm of �rst-order logic.

It is not di�cult to specify an algorithm to convert �rst-order formulas to a

disjunction of conjunctions of anti-prenex formulas of FOL (FOLDNF).5 This

5The history of FOLDNFs as well as the algorithm used to yield minimized FOLDNFs and

their use for identifying structures of models are elaborated in detail in Lampert (2017).
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algorithm converts formulas to negation normal forms (NNFs), then applies PN-

laws that are used to convert formulas into prenex normal forms in the opposite

direction (including scope transformations for a most powerful miniscoping), and

�nally applies distributive laws to yield an FOLDNF. Furthermore, auxiliary

laws can be applied to minimize and, thus, simplify FOLDNFs.

It is a curious fact of the history of logic that minimized FOLDNFs were not

studied in detail. The discussion in mathematical logic is dominated by prenex

normal forms; computational accounts of FOL are oriented by CNFs, skolem-

ization and the method of resolution or tableaux; and iconic traditions such

as Peirce's existential graphs or Frege's two-dimensional notation are neither

taken from nor isomorphic to FOLDNFs. However, similar to DNFs of proposi-

tional logic, FOLDNFs are transparent normal forms for identifying conditions

of truth (or the structure of models) of instances of initial formulas, which are

converted to FOLDNFs: primary, anti-prenex formulas are the equivalents to

atomic formulas in propositional logic that identify primitive structures from

which su�cient conditions of truth can be composed by conjunction, which in

turn are composed by disjunction to make up a necessary condition of truth (of

instances of) the initial formula.

However, there is one important di�erence between minimized FOLDNFs

and DNFs: The atomic propositions of a DNF are primitive in an absolute

sense; they cannot be analysed any further and they are logically independent.

Drawing the analogy to factorization in algebra, they correspond to linear fac-

tors. Primary formulas of FOLDNFs, however, are only `irreducible' relative

to the algorithm converting �rst-order formulas to FOLDNFs. This algorithm,

e.g., does not exclude that a primary formula (or a conjunction of them) can

be reduced further to an inconsistency and it does not result in factors that

are necessarily independent. One might consider models in FOL as the most

reasonable equivalent to linear factors (localized in C). However, an equiva-

lence procedure in terms of an algorithm resulting in enumerating alternative

models (e.g., Herbrand instances) is impossible, since these models are in�nite

(in number as well as by themselves given an in�nite domain). Thus, an iconic

proof procedure cannot reduce formulas to models. Instead, this procedure

yields FOLDNFs and a relative notion of irreducible factors. In this respect,

FOLDNFs are similar to a factorization of polynomials over Q.

According to this analogy, an analogon to Galois theory is needed for FOL.

Due to the acceptance of the Church-Turing theorem, however, this analogon has

not been recognized as a relevant research problem. This may be one reason for

the ignorance of FOLDNFs. An analogon to Galois theory in FOL amounts to a

theory studying structures of models by investigating nothing but properties of

FOLDNFs and their derivations to identify structures of models and to generate

invariant kinds of models without starting from a denumerable or even non-
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denumerable in�nite set of interpretations. This is an ambitious enterprise that

has not yet been tackled in logic research. In the following, I con�ne myself to

the more speci�c decision problem for the satis�ability of single disjuncts Di of

FOLDNFs.

In contrast to DNFs and Venn-Peirce-diagrams, one cannot directly read o�

satis�ability from a conjunction of primary formulas. Instead, an algorithm is

needed that ensures that a conjunction of primary, anti-prenex formulas cannot

further be reduced to a contradiction and, thus, indeed speci�es identity criteria

for models of an initial formula. This algorithm would amount to a decision pro-

cedure in �rst-order logic, since an FOLDNF is satis�able i� one of its disjuncts

is satis�able.

Let me illustrate this by an example. The following, initial formula provides

no criteria to read o� its logical properties:

¬∃y1∀x1∃y2(¬Fy1x1 ∨ (¬Fy2x1 ∧ Fy2y1) ∨ ¬∀x2¬Fx2x2) (1)

One cannot, e.g., identify from (1) whether the formula is satis�able or, if

so, what kind of structure its models have. With respect to its logical properties

(e.g., satis�ability), the formula is a symbolic expression, and the conventional

�rst-order notation is symbolic (not iconic). Converting (1) to an FOLDNF

results in a conjunction of two primary (anti-prenex) formulas:

∀x1∃y1(Fx1y1 ∧ ∀x3(Fx3y1 ∨ ¬Fx3x1)) ∧ ∀x2¬Fx2x2 (2)

(1) and the equivalent formula (2) have only in�nite models. Thus, an

algorithm going through �nite interpretations will never yield a model, though

the formulas are satis�able. An algorithm going through single interpretations

would be similar to an algorithm approximating irrational solutions of equations

(e.g., x2 = 2) within the decimal number notation: no pattern is identi�ed that

allows one to determine questions involving in�nity.

However, there is no need to go through single �nite interpretations if one

can read o� the structure (or pattern) of models from (2). How one may do so

becomes manifest by converting (2) further to a two-dimensional notation (TF-

diagram) that explicates the way each part of the FOLDNF (2) contributes to

identify a structure of models or counter-models. Figure 1, e.g., provides the

T-part of a TF-diagram; this T-part expresses the conditions of truth or the

structure of models of an initial formula, while the F-part of a TF-diagram

identi�es conditions of falsehood or the structure of counter-models.
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Figure 1: T-part of a TF-diagram for (2)

TF-diagrams make manifest the fact that the role of bound variables is to

identify positions of the propositional functions and that the role of conjunction

and disjunction within the scope of quanti�ers in primary formulas is to identify

irreducible structures of models rather than to identify how a whole structure

is composed of these irreducible structures (as conjunction and disjunction do

outside the scope of quanti�ers in FOLDNFs). Furthermore, TF-diagrams make

it possible to read them from the outside to the inside by a mechanical read-

ing algorithm that explicates how to paraphrase the (�nite) structure of (pos-

sible in�nite) models (or counter-models) from the TF-diagram.6 Thus, the

TF-diagram of �gure (1) can be paraphrased in terms of a description of the

structure of models as follows:

• Instances of the initial formula (1) are true i�

I1 All objects, the same in the �rst position of pairs of type 1 and the

second position of pairs of type 3, combined with some object, the

same in the second position of pairs of type 1 and in the second

position of pairs of type 2, combined with all objects, distributed

among those in the �rst position of pairs of type 2 and those in

the �rst position of pairs of type 3, make up pairs of type 1 and 2

satisfying and pairs of type 3 not satisfying the dyadic propositional

function F , and

I2 All objects, the same in the �rst and second position, make up pairs

of type 4 not satisfying the dyadic propositional function F .

This reading demonstrates that the T-part of the TF-diagram of �gure (1)

is an iconic expression that may provide criteria to identify the structure of

models for the initial symbolic expression (1).

Humans might be able to imagine (and machines to generate successively)

the combination of pairs satisfying the conditions described in I1 and I2 within

an in�nite domain and to consider a consistent composition hereof, thus inter-

preting the above paraphrase as a rule to generate in�nite models such as the

following (overlined pairs signify that the pairs do not satisfy =(F )):

6I have speci�ed the algorithm to generate TF-diagrams and their mechanical paraphrase

as well as their interpretation as an iconic notation in Lampert (2018).
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Domain: {1, 2, 3, . . .}.

=(F ):

{ (1, 1), (1, 2), (1, 3), (1, 4), . . .,

(2, 1), (2, 2), (2, 3), (2, 4), . . .,

(3, 1), (3, 2), (3, 3), (3, 4), . . .,

... . . . . . .
...

. . . . . . }

The envisaged construction of a model, however, must not turn out to be

inconsistent at some step of its generation. For a human or a machine to legit-

imately interpret TF-diagrams as descriptions of the structure of computable

models or counter-models that satisfy certain patterns in an in�nite domain,

it must be decidable in advance that disjuncts of FOLDNFs (such as (2)) and

their TF-diagrams (such as �gure (1)) do not imply a contradiction but, in fact,

identify a satis�able structure.

Let me illustrate the basic idea of a decision procedure satisfying this claim

by analogy to algorithms such as the Euclidean division algorithm for deter-

mining whether a rational has a �nite decimal representation or an analogous

algorithm that decides whether square roots have a rational solution (cf. section

3). These algorithms result in either a �nite solution or a repeating pattern that

may serve as a criterion for the impossibility to derive a �nite solution within a

certain notation.

The same is possible in the case of disjuncts Di of FOLDNFs. In automated

theorem proving it is standard to consider an exhaustive search for proofs of

minimal length within a correct and complete calculus. In question is to what

extent it is possible to decide �rst-order satis�ability by this so-called `method

of saturation'. Standard versions of this method are based on resolution or

tableau, do not apply it to Di (but to skolemized CNF) and, most importantly,

do not implement a criterion that detects loops in the proof search. Thus, they

do not manage to decide all �rst-order formulas.

I implemented a decision procedure that is based on a correct and complete

calculus (called the `NNF-calculus') that uses the rule ∧I (A a` A ∧ A) as the
decisive rule that increases complexity. Proofs of minimal length for Di within

this calculus are proofs that make use of ∧I to a minimal extent. A search

for ∧I-minimal proofs of Di is exhaustive if all possible alternatives available

to unify pairs of literals from Di to derive contradictions by proofs of minimal

length are considered. The most important point is that one can de�ne a schema

for the exhaustive proof search for ∧I-minimal proofs within the NNF-calculus

such that either a proof of contradiction is found or each branch of the proof tree

results in a repeating derivation pattern, which serves as a criterion to break

o� the search on this path. In this case, the iconic notation for deciding upon
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satis�ability is a notation for sequences of formulas in a derivation tree of an

exhaustive proof search within the NNF-calculus starting from disjuncts Di of

FOLDNFs. This notation keeps track of all applications of ∧I as well as the
resulting uni�cations of literals and yields either an explicit contradiction on a

proof path or patterns of repetition on all proof paths.

It may su�ce to illustrate this brie�y by considering one branch of the

proof search for (2). (2) contains two and only two pairs of uni�able literals:

{Fx1y1, ¬Fx3x1} and {Fx3y1,¬Fx2x2}.7 To unify them, universal x variables

must be replaced by existential y variables. However, to do so, one must con-

sider optimized prenex normal forms such that a universal quanti�er is in the

scope of an existential quanti�er if the universal variable is to be replaced by

the existential variable. There is only one optimized prenex for a prenex nor-

mal form of (2), which I indicate by an ordered list of the bound variables:

{x1, y1, x2, x3}. However, to unify the �rst uni�able pair of literals, x1 must be

replaced with y1, which is not possible in a logically valid way with respect to

the optimized prenex. In this case, the universal expression starting with ∀x1
has to be `multiplied' by ∧I to replace x1 (which is now bound by two di�er-

ent universal quanti�ers) in di�erent scopes by di�erent y variables, namely, by

a new variable y0 that is bound by a new existential quanti�er preceding any

optimized prenex by stipulation and by y1. Thus, x1 can replaced by y0 in the

literal Fx1y1 (stemming from one conjunct of the ∧I-application) and by y1

in the literal Fx3x1 (stemming from another conjunct) of the ∧I-application).
This, in turn, makes it necessary to replace x3 with y0 in the �rst uni�able pair

{Fx1y1,¬Fx3x1} and with y1 in the second uni�able pair {Fx3y1,¬Fx2x2}.
To identify variables bound by di�erent quanti�ers, it is convenient to rename

variables after ∧I is applied so that, strictly speaking, substitutions with indices

of depth 2 are to be considered after a �rst application of ∧I. The general idea
of the search for ∧I-minimal proofs is to compute all necessary substitutions

to unify uni�able pairs of literals to derive a contradiction. If a sequence of

∧I-applications results in a loop, roughly meaning that the same sort of pairs of

literals are again to be uni�ed by replacing the same sort of x variables with the

same sort of y variables, the proof path on this branch terminates because no

minimal proof of contradiction can be found on a path in which a ∧I-application
causes a repetition of itself. This `Loop-Criterion' allows one to decide upon sat-

is�ability by a �nite pattern and, thus, makes going through an in�nite number

of interpretations super�uous.

The topic of this paper was neither to spell out in detail nor to prove the

sketched decision procedure. Instead, this paper argued (i) that an iconic proof

7Simple tests for uni�ability exclude all other pairs of literals, including, e.g.,

{Fx3y1,¬Fx3x1}, which is not uni�able due to the order of quanti�ers that bind the variables

occurring in the pair if one abstains from all other parts of the formula. The same holds for

{Fx1y1,¬Fx2x2}.
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conception goes hand in hand with a critique of undecidability proofs of FOL,

(ii) that it is possible to o�er a clear idea for realizing an iconic proof conception

in terms of a decision procedure for the whole realm of FOL and (iii) that this

proof conception is in line with well-known decision procedures of the algebraic

tradition. Decidability is a matter of reducing decision problems to an iconic

notation and decidability of FOL is not a matter that can be settled by encoding

decision problems within the propositional language of FOL.
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