
A DECISION PROCEDURE FOR PURE FIRST-ORDER LOGIC

TIMM LAMPERT

Humboldt University Berlin, Unter den Linden 6, D-10099 Berlin
e-mail address: lampertt@staff.hu-berlin.de

Abstract. This paper explains the logical foundations, proof strategies and termination
criteria of the program “FOL-Decider” that decides for every formula of pure first-order
logic without identity whether it is refutable. It is proven that the FOL-Decider terminates
and it is explained why it is not quite correct.

Contents

1. Introduction 1
2. Preliminaries 2
3. Basic Idea 5
4. NNF-Calculus 6
5. Searching for ∧I-minimal Proofs 11
5.1. ∧I-minimal Proofs 11
5.2. Parameters of a ∧I-minimal Proof Search: L, ℘, and sub 12
5.3. ∧I Applications 20
5.4. Extending L′ and sub′ 25
6. Termination: Loop List 27
7. Output 39
8. Effective Proof Search 40
9. Correctness 41
Acknowledgements 42
References 42

1. Introduction

This paper explains a decision procedure for first-order logic formulas without names, func-
tions or identity (FOL) and discusses its validity. The FOL-Decider is an implementation
of the algorithm described in this paper, with the purpose of evaluating the algorithm’s
feasibility. It is programmed in the Wolfram Language of Mathematica. This language
permits a rather plain and transparent implementation. Only a slight effort has been made
to optimize the decision procedure. This is because the intention is for the FOL-Decider

c© Lampert

1



2 LAMPERT

to serve as a proof of concept (PoC) that focuses on the logical principles of the decision
procedure rather than on its optimization. For this reason, the FOL-Decider is, in general,
still slower than well-known logic engines such as Beagle, Darwin, i-Prover, E, Vampire and
SPASS. Short formulas with infinite models only, however, constitute a verifiable exception
(cf. p. 38). The FOL-Decider accepts the TPTP syntax and runs under the TPTP site.
It was tested with all FOL formulas in the TPTP library with fewer than 20 atoms, as
well as other formulas. The restriction to formulas with fewer than 20 atoms is due to the
disadvantageous properties of the FOL-Decider with regard to fast decision-making.

The general approach of the FOL-Decider is nothing special. Like all logic engines,
it intends to refine the search for proofs within a correct and complete calculus to the
effect that redundant and unnecessary application of deductive rules are avoided whenever
possible. At best, satisfiability can be proven by showing that an exhausted (fully saturated)
optimized proof search. The problem with any optimization of the proof search is to preserve
correctness and completeness. Termination must not be achieved on the cost of these
properties; this has to be proven in the case of any optimization of the proof search. The
FOL-Decider is a special version of a saturation algorithm, which provides a sufficient
criterion for termination based on a new proof strategy. According to the Church-Turing
theorem, such a procedure cannot be correct. I will point out where the procedure fails.

In contrast to powerful logic engines, the FOL-Decider does not make use of unification
algorithms based on skolemization as it is usual for engines based on resolution or tableaux.
The proof search strategy used in the FOL-Decider is designed to detect superfluous repeti-
tions of isomorphic proof steps in a proof search. In a proof search based on skolemization
the depths of nested skolem functions may increase to infinity. Considering Krom-Horn
clauses it is rather obvious that any attempt to specify a correct termination criterion for the
increasing nesting of skolem-functions must fail, for details cf. [Lampert/Nakano (2022)].
This, however, is not likewise obvious within the proof search strategy of the FOL-Decider
that does not involve increasing nesting of skolem-functions. This proof strategy allows to
specify what constitutes repetitions of isomorphic proof steps without referring to expres-
sions that increase in nesting.

The FOL-Decider is based on a new proof strategy that was developed for the purpose of
specifying a decision procedure for FOL. I call this strategy “the ∧I-minimal proof strategy
in the NNF-calculus”. It is based on nothing but equivalence transformation within FOL.
This paper explains this new strategy. Section 2 to section 4 introduce the basic relevant
concepts and ideas. Section 5 explains the ∧I-minimal proof strategy. Section 6 defines
the Loop Criterion and proves that the FOL-Decider terminates in every case. The final
section, section 9, discusses the correctness of the implemented decision procedure based on
the explanations presented in the previous sections 7 and 8.

2. Preliminaries

The following informal description of the FOL-Decider explains the principles of the im-
plemented decision procedure, and proves its termination and discusses its correctness. I
will focus on the basic principles of the explained decision procedure. I will restrict the
presented explanations to the critical second step of the FOL-Decider. The rather trivial
first step, which concerns the conversion of FOL formulas into disjunctive normal forms of
FOL (FOLDNFs), is explained in my papers [Lampert (2017)] and [Lampert (2019)]. In the
following, I will invoke some of the essential definitions from these papers without repeating



DECISION PROCEDURE FOR FOL 3

the trivial algorithms involved or proofs of the essential theorems. [Lampert (2019)] intro-
duces the proof strategy on which the FOL-Decider is based and illustrates it by applying
it to Herbrand formulas, i.e., a fragment of FOL that is accepted to be decidable. Some
familiarity with [Lampert (2019)] will facilitate a better understanding of the paper at hand
but is not necessary, as I summarize the basics in the following.

[Lampert (2017)] provides some historical, philosophical and logical background con-
cerning the use of FOLDNFs. The described algorithm for minimizing FOLDNFs1, however,
is irrelevant to the following. Only the algorithm for converting FOL formulas into FOLD-
NFs, described in section 2 of [Lampert (2017)], is of importance for the FOL-Decider.
In the following, I will presume the generation of FOLDNFs from initial FOL formulas
and merely provide their definition, which is based on negation normal forms (NNFs) and
primary formulas.

Definition 2.1. An FOL formula is expressed in negation normal form (NNF) iff it contains
only ∧ and ∨ as dyadic connectives and ¬ appears only directly to the left of atomic
propositional functions.

Definition 2.2. Primary formulas are defined as follows:

(1) An NNF that does not contain ∧ or ∨ is a primary formula.
(2) NNFs that contain ∧ or ∨ are primary formulas iff they satisfy the following condi-

tions:
(a) Any conjunction of n conjuncts (n > 1) is preceded by a sequence of existential

quantifiers of minimal length 1, and all n conjuncts contain each variable of the
existential quantifiers in that sequence.

(b) Any disjunction of n disjuncts (n > 1) is preceded by a sequence of universal
quantifiers of minimal length 1, and all n disjuncts contain each variable of the
universal quantifiers in that sequence.

(3) Only NNFs that satisfy (1) or (2) are primary formulas.

Definition 2.3. An FOLDNF is a disjunction of length ≥ 1 of conjunctions of lengths ≥ 1
of primary formulas.

For FOLDNFs, I stipulate that all variables bound by universal quantifiers are x vari-
ables and that all variables bound by existential quantifiers are y variables. This can be
easily achieved by renaming variables.

[Lampert (2019)] describes essential proof strategies for the FOL-Decider and applies
them to a fragment of FOL that is known to be decidable. This fragment consists of
formulas that are convertible into FOLDNFs with primary formulas that do not contain ∨
in the scope of quantifiers. The decision procedure described in [Lampert (2019)] is based
on a procedure that decides, for two literals L1 and L2 of an FOLDNF, whether they are
unifiable. A unifiable pair of literals is definable via subformulas ψ (cf. Definition 2.4).
I will consider only unifiable pairs of literals of disjuncts Di of an FOLDNF because an
FOLDNF is refutable iff each disjunct Di is refutable. Therefore, the decision problem for
an FOLDNF reduces to the decision problem for Di.

Definition 2.4. A subformula ψ is generated from a disjunct Di of an FOLDNF as follows:

(1) Delete all literals in Di except L1 and L2.

1This algorithm is also implemented as a Mathematica program. Like the FOL-Decider, this program
can be accessed and run via the link given in footnote ??.



4 LAMPERT

(2) Delete all quantifiers binding variables that do not occur in L1 or L2.
(3) Delete all occurrences of ∧ and ∨ except the one that connects L1 and L2 in the

logical hierarchy of Di.
(4) If L1 and L2 are connected by ∨, replace this ∨ with ∧.

Definition 2.5. A pair of literals {L1, L2} from Di is unifiable iff the subformula ψ gen-
erated from Di that contains L1 and L2 is contradictory (cf. [Lampert (2019)], section
12).

A pair of literals must be unifiable to contribute to a proof of contradiction.2

[Lampert (2019)] describes a procedure for deciding whether a subformula ψ is refu-
table. The decidability of these formulas also trivially follows from the known decidability
of Herbrand formulas. Thus, the unifiability of a pair of literals is decidable. Finally,
[Lampert (2019)] specifies an algorithm (Algorithm 13.2) that deletes from the disjuncts
Di of an FOLDNF all literals that are not members of any unifiable pair of literals. The
resulting purged FOLDNF is sat-equivalent to the input formula φ. Furthermore, I assume
that the FOLDNFs are rectified.

Definition 2.6. Purged and rectified FOLDNFs are FOLDNFs with disjuncts Di that
satisfy the following conditions:

Purged: Every literal in Di is a member of at least one unifiable pair of literals from
Di.

Rectified: No variable in Di is bound by more than one quantifier.

During the purging process, literals that are not members of any unifiable pair of literals
from Di are first replaced with sat (for “satisfiable”). Then, as many occurrences of sat
as possible are deleted by applying the following two sat-rules (cf. Algorithm 13.2 from
[Lampert (2019)]):

sat ∧A a`sat A SAT1
sat ∨A a`sat sat SAT2

Table 1: sat-Rules

Step 1 of the FOL-Decider results in purged and rectified FOLDNFs that are sat-
equivalent to the initial input formula φ. The universally quantified variables of these
purged and rectified FOLDNFs are x variables with indices of depth 1, and the existentially
quantified variables are y variables with indices of depth 1. Thus, if Di contains m universal
quantifiers and n existential quantifiers, then Di contains the variables x1 through xm and
y1 through yn. By applying several simple auxiliary rules (cf. table 3), the FOL-Decider also
simplifies the FOLDNFs in this first step. However, the extensive algorithm for minimizing
FOLDNFs described in [Lampert (2017)] is not applied by default for reasons of efficiency.

Henceforth, for brevity, I will simply use the term “FOLDNFs” to refer to the purged,
rectified and simplified FOLDNFs obtained as a result of step 1 of the FOL-Decider.

2I speak of “proofs of contradiction” in the case of proofs that prove that an initial formula φ is con-
tradictory (= refutable). By contrast, I refer to indirect proofs (= proofs by reductio ad absurdum) that
prove the negation of one of the assumptions of a deduced contradiction as “proofs by contradiction”. The
FOL-Decider is concerned not with proofs by contradiction but with proofs of contradiction.



DECISION PROCEDURE FOR FOL 5

The refutability of certain initial formulas φ can already be decided in step 1 of the
FOL-Decider by virtue of a simple False/sat-check. For any disjunct Di of the resulting
FOLDNF, the DNF matrix is generated, as defined below.

Definition 2.7. The DNF matrix of a formula φ is the scope of a prenex normal form of
φ in disjunctive normal form (DNF).

If each disjunct of the DNF matrix contains two conjuncts, A and ¬A (where A is
atomic), then Di is refutable. If Di does not contain ∨ and it (and, consequently, the single
disjunct of its DNF matrix) does contain a unifiable pair of literals, then it is refutable.
In both cases, Di can be deleted from the FOLDNF. If all of the Di are refutable, then
φ is refutable. If any disjunct of the DNF matrix of Di does not contain any unifiable
pair of literals from Di, then φ is not refutable (i.e., φ is satisfiable). Based on this check,
FOLDNFs with disjuncts Di that do not contain ∨ are already decidable.

The algorithms applied in step 1 of the FOL-Decider are explained in the cited papers,
where their correctness and termination are also proven. On this basis, the following (trivial)
theorem can be proven:

Theorem 2.8. The initial formula φ is sat-equivalent to its FOLDNF (= the result of step
1 of the FOL-Decider).

Proof. The proof is based on the fact that all applied rules either (i) are logical equivalence
rules, (ii) are sat-equivalent because only literals that are not part of a unifiable pair of
literals are deleted, or (iii) rely on the described trivial False/sat-check. For details, cf.
[Lampert (2019)].

In the following, I consider only the second step of the FOL-Decider, which decides
the refutability of disjuncts Di whose refutability is not already decided in step 1. Such a
disjunct (a conjunction of n primary formulas, where n ≥ 1) contains at least one primary
formula with at least one occurrence of ∨ that is preceded by at least one universal quantifier.
As soon as it is decided that Di is not refutable, the FOL-Decider returns sat; as soon as
all Di are identified as refutable, the FOL-Decider returns False.

3. Basic Idea

The type of decision-making performed for Di in step 2 of the FOL-Decider is comparable to
that of algorithms for deciding whether certain numbers are finitely representable within a
specific notation. The division algorithm for deciding whether a rational number has a finite
representation within the decimal system may serve as a simplest illustration. If a rational
number is representable by a finite decimal, then the algorithm returns that finite decimal,
e.g., 0.25 in case of 1

4 . If it is not, then the algorithm runs in an infinite loop consisting of
infinite iterations of a computational step that yields an output that dictates that the same
computation must be repeated; e.g., it repeats the computation 10÷ 3 = 3 with remainder
1 in the case of 1

3 . Such a loop is detectable and can be utilized as a negative decision
criterion; as soon as the computation enters such a loop, it can be concluded that no finite
representation of that rational number is available in the decimal system. Consequently,
the loop can be abandoned, and the computation terminates with a negative result as soon
as the loop is detected.

In the case of the FOL-Decider, the question to be decided is not the equivalence of a
number to a finite representation within a specific notation but rather the equivalence of a
Di to an explicit contradiction. This question is equivalent to the question of refutability.



6 LAMPERT

Definition 3.1. An explicit contradiction is an NNF without universal quantifiers and with
a DNF matrix in which each disjunct contains a conjunct A and a conjunct ¬A (where A
is atomic).

Thus, e.g., ∃y1∃y2(Fy1y2y1 ∧ ¬Fy1y2y1) is an explicit contradiction.
If an explicit contradiction is deducible from Di, then the FOL-Decider returns a recipe

for its deduction (it will turn out that this is not quite correct, cf. p. ??). If no explicit
contradiction is deducible from Di, then the steps of the proof computation along each proof
path in the search tree for proofs of contradiction run, roughly speaking3, in a detectable
loop. The criterion for terminating the search for a proof on a given proof path due to
the repetition of a step of the proof computation on that proof path is called the Loop
Criterion. This criterion is defined in section 6, and it is proven to ensure the termination
of the FOL-Decider in the case that no proof is found (cf. Theorem 6.18). If all proof
paths for a Di terminate without a proof of contradiction having been identified, then the
FOL-Decider returns sat.

The general idea of proving that something is impossible by reducing endless iteration
operations to “visual recursions” (loops detected by patterns) was inspired by Wittgenstein’s
ideas on induction (cf. PR VIII-XIX, PG, part II.VI). The FOL-Decider applies this idea
to identify unprovability by detecting loops in the proof search. The task is to define an
algorithm in terms of an equivalence procedure for the application of logical operations of a
correct and complete calculus such that the Loop Criterion can be applied to identify non-
refutable formulas. As will be seen from the definition of the Loop Criterion, this approach
still satisfies Wittgenstein’s main idea of specifying a decision procedure by an algorithm
such that the properties of the resulting expressions – loop lists in the case of the FOL-
Decider – can serve as decision criteria. One might say that unlike in the axiomatic method,
it is not properties that extend beyond logic that are encoded within logical formulas due
to intended interpretations but rather logical properties that are encoded by expressions
of the proper outer form (“a feature” (or pattern) “of certain symbols”, according to TLP
4.126) that result from a purely formal, intended equivalence transformation that does not
reach beyond logic. The [Lampert/Nakano (2022)], however, explains why this idea cannot
serve to decide the whole realm of FOL.

The rationale for the proof strategy underlying the FOL-Decider is to enable the ap-
plication of the Loop Criterion. The proof strategy that shall make this possible is the
“∧I-minimal proof strategy”. Before I explain the search for proofs based on this strategy
in section 5, I will introduce the calculus that is applied in the proofs of the FOL-Decider
in section 4.

4. NNF-Calculus

[Lampert (2019)] introduces the NNF-calculus and proves its correctness and completeness
(cf. Theorem 3.3. in [Lampert (2019)]). The correctness follows trivially from the fact that
all rules are well-known derivation rules. The completeness is proven by showing that any
proof within the correct and complete tree calculus can be transformed into a proof in the
NNF-calculus. This section summarizes the rules of the NNF-calculus. Its rules are applied
either to NNFs or for the initial generation of NNFs. Connectives such as →, ↔, and | are

3In fact, computations along proof paths that do not result in a proof are often terminated without
application of the “Loop Criterion” (cf. Example 5.31, p. 27). However, the Loop Criterion ensures that
every proof path will terminate unless a proof is found; cf. section 6.



DECISION PROCEDURE FOR FOL 7

eliminated using their well-known definitions immediately at the beginning of step 1 of the
FOL-Decider. In the following, I omit these rules as well as the sat-rules listed in table
1. In addition to the sat-equivalent elimination of literals during the purging process and
the rule for universal quantifier elimination (cf. table 5), the NNF-calculus comprises only
well-known logical equivalence rules. In the following, I assume that ∧ ties more closely
than ∨.

¬¬A a` A DN
¬(A ∨B) a` ¬A ∧ ¬B DMG∨
¬(A ∧B) a` ¬A ∨ ¬B DMG∧

A ∧B a` B ∧A COM∧
A ∨B a` B ∨A COM∨

(A ∧B) ∧ C a` A ∧ (B ∧ C) ASS∧
(A ∨B) ∨ C a` A ∨ (B ∨ C) ASS∨
A ∧ (B ∨ C) a` A ∧B ∨A ∧ C DIS1
A ∧B ∨ C a` (A ∨ C) ∧ (B ∨ C) DIS2

A a` A ∧A ∧I
Table 2: Equivalence Rules from Propositional Logic

A ∧ ¬A a` ⊥ IP⊥0
A ∨ ¬A a` > IP>0
> ∧ A a` A IP>1
> ∨ A a` > IP>2
⊥ ∧ A a` ⊥ IP⊥1
⊥ ∨A a` A IP⊥2

(A ∨B) ∧A a` A IP1∧
A ∧B ∨A a` A IP1∨

A ∨A a` A ∨I
Table 3: Auxiliary Rules

The auxiliary rules are applied in step 1 of the FOL-Decider to simplify the FOLDNFs.
Like DN, DMG∨, DMG∧, DIS1 and DIS2, these rules are not applied any further in step 2
of the FOL-Decider. ASS∧, ASS∨, COM∧ and COM∨ are applied implicitly in the FOL-
Decider by defining conjunctions and disjunctions as “orderless”. Of all the rules mentioned
thus far, only ∧I is used in step 2 of the FOL-Decider, as will be discussed below. In step
1 of the FOL-Decider, ∧I is applied only in the unproblematic direction from right to left.

¬∃µA(µ) a` ∀µ¬A(µ) Def. ¬∃
¬∀µA(µ) a` ∃µ¬A(µ) Def. ¬∀

∀µ∀νA(µ, ν) a` ∀ν∀µA(µ, ν) ∀V
∃µ∃νA(µ, ν) a` ∃ν∃µA(µ, ν) ∃V
∀ν(A ∧ B(ν)) a` A ∧ ∀νB(ν) PN1
∀ν(B(ν) ∧ A) a` ∀νB(ν) ∧ A PN2
∀ν(A ∨ B(ν)) a` A ∨ ∀νB(ν) PN3
∀ν(B(ν) ∨ A) a` ∀νB(ν) ∨ A PN4
∃ν(A ∧ B(ν)) a` A ∧ ∃νB(ν) PN5



8 LAMPERT

∃ν(B(ν) ∧ A) a` ∃νB(ν) ∧ A PN6
∃ν(A ∨ B(ν)) a` A ∨ ∃νB(ν) PN7
∃ν(B(ν) ∨ A) a` ∃νB(ν) ∨ A PN8

∀ν(A(ν) ∧ B(ν)) a` ∀νA(ν) ∧ ∀νB(ν) PN9
∃ν(A(ν) ∨B(ν)) a` ∃νA(ν) ∨ ∃νB(ν) PN10

∃µA(µ) a` ∃νA(ν) SUB1
∀µA(µ) a` ∀νA(ν) SUB24

Table 4: Equivalence Rules for Predicate Logic

Like DN, DMG∨ and DMG∧, the quantifier definitions Def. ¬∃ and Def. ¬∀ are
applied only to obtain NNFs at the beginning of step 1 of the FOL-Decider. Similar to the
associative and commutative laws for ∧ and ∨, ∀V and ∃V are applied implicitly in the
FOL-Decider by defining sequences of similar quantifiers as orderless. The application of PN
laws, however, is significant in both step 1 and step 2 of the FOL-Decider. By applying PN
laws from left to right, anti-prenex normal forms can be generated. In anti-prenex normal
forms, quantifiers are driven inward as far as possible through the application of PN laws.
This, in turn, makes it possible to generate optimized prenex normal forms by applying PN
laws from right to left. In optimized prenex normal forms, existential quantifiers are placed
as far to the left of universal quantifiers as possible by means of PN laws (cf. Definition
5.8). This will be discussed below on p. 13 (cf. also [Lampert (2019)], section 6).

SUB1 and SUB2 are applied during the rectification process in step 1 of the FOL-
Decider. To optimize the application of the auxiliary rules, SUB1 and SUB2 are also
applied in step 1 of the FOL-Decider to achieve the opposite of rectification, namely, to use
as few different variables as possible. This serves merely to simplify the FOLDNFs and is
not essential for the decision procedure. In step 2 of the FOL-Decider, SUB1 and SUB2 are
used only for rectification subsequent to the application of ∧I (from left to right). Unlike in
step 1, in step 2, the depth of the indices is incremented by 1 with each application of SUB1
or SUB2. For example, after ∧I has been applied once to multiply a universally quantified
expression ∀µA(µ), the variable µ is replaced with µ1 in the first conjunct and with µ2 in
the second. Renaming by increasing the depth of the variables makes it possible to identify
the relations of the variables, literals and pairs of literals that arise from the multiplication
of conjuncts via ∧I with the initial variables, literals and pairs of literals from the initial Di

in step 2 of the FOL-Decider. Indices of depths > 1 indicate derivates.

Definition 4.1. A derivate of a variable µ with an index of depth 1 is a variable that is
identical to µ up to indices of depth 1. A derivate of a pair of literals {L1, L2} containing
variables with indices of depth 1 is a pair of literals that is identical to {L1, L2} up to
indices of depth 1.

For example, x12 is a derivate of x1, and {Fx12y21 ,¬Fx321x211} is a derivate of {Fx1y2,
¬Fx3x2}.

Aside from the sat-rules (cf. table 1), the following rule is the only rule in the NNF-
calculus that is not a logical equivalence rule:

∃µ . . .∀νA(µ, ν) ` ∃µA(µ, ν/µ) ∀E
Table 5: Universal Quantifier Elimination

4The following restriction holds for SUB1 and SUB2: ν does not occur in A(µ).



DECISION PROCEDURE FOR FOL 9

For simplicity, it is not required that ∀ν must occur directly to the right of ∃µ. It is
required only that ∀ν be in the scope of ∃µ. Upon the application of ∀E, all occurrences
of ν in the scope of ∀ν are replaced with µ, and ∀ν is eliminated. It is also permissible to
replace ν with µ when ∃µ is a new existential quantifier preceding the resulting formula.
I subsume this case under ∀E. I arbitrarily choose the variable y0 as a new y variable and
require that y0 does not occur in the expression to the left of ` in ∀E.

Step 2 of the FOL-Decider starts from the Di; then, ∧I is iteratively applied to univer-
sally quantified expressions. Each application of ∧I is followed by miniscoping (by applying
laws PN1-8 from left to right) and rectification (by applying SUB1 and SUB2). I denote
anti-prenex expressions that result from ∧I applications, miniscoping and rectification by
D∗i . In contrast to step 1 of the FOL-Decider, in step 2, neither DIS1 or DIS2 nor PN9 or
PN10 is applied to generate anti-prenex normal forms D∗i (cf. also p. 14 below). Strictly
speaking, the application of ∧I results in a conjunction of identical conjuncts. Henceforth,
however, I subsume miniscoping and rectification under the term “∧I application”. Thus,
the resulting conjuncts are not identical because they vary in the indices of the variables
that are bound by quantifiers occurring in the multiplied expression. Since only universally
quantified expressions are multiplied in step 2 of the FOL-Decider, the resulting conjuncts
vary by at least one universally quantified variable. In the case that a proof is found, the fi-
nal D∗i is also “purged∗”, meaning that literals that are not needed for the ∧I-minimal proof
are eliminated from D∗i (cf. Definition 5.6). As long as no final D∗i has been derived, the
D∗i are purged∗ only for the sake of generating optimized prenexes from purged∗ anti-prenex
normal forms in the steps of the proof calculation in step 2 of the FOL-Decider; cf. footnote
15 for an example. I denote optimized prenex normal forms generated from purged∗ D∗i by
D∗∗i . An optimized prenex normal form D∗∗i is optimal iff it allows an explicit contradiction
to be deduced by applying ∀E (cf. Definition 5.22 for details). Finally, I use D∗∗∗i to denote
explicit contradictions deduced from D∗∗i by applying ∀E (cf. figure 1).

Step 2 of the FOL-Decider computes whether explicit contradictions D∗∗∗i can be de-
duced from the initial Di by applying ∀E to optimized prenex normal forms D∗∗i ; this
computation is performed by applying ∧I and generating D∗i . Strictly speaking, ∀E is
never actually applied in the FOL-Decider. The FOL-Decider merely computes whether
applications of ∀E subsequent to equivalence transformations would result in a proof of
contradiction. Thus, ∀E is never applied to formulas that are not refutable. Moreover, in
∧I-minimal proofs consistent with the recipe returned by the FOL-Decider, ∀E will only be
applied to formulas identified as refutable if doing so will ultimately allow explicit contra-
dictions to be deduced. Thus, the decision-making of the FOL-Decider is based on nothing
but equivalence transformations with regard to the property of refutability, which is the
property in question.

There is no need for a rule for existential quantifier elimination in the NNF-calculus.
Unlike in the tree calculus (tableau calculus), quantified expressions are not decomposed
multiple times. Instead, in the proofs of the NNF-calculus, universally quantified expressions
∀µA(µ) are multiplied by applying ∧I. Consequently, the universal quantifier ∀µ and its
variable µ are multiplied. After rectification and the subsequent suitable generation of an
optimized prenex normal form, the multiplied x variable can then be replaced with different
y variables in literals stemming from different conjuncts by applying ∀E (cf. Example 4.1,
[Lampert (2019)], p. 7, and the discussion on p. 20 below). I call the process of computing
and applying ∧I in step 2 of the FOL-Decider “∧I-optimization”.



10 LAMPERT

NNF φ

?

FOLDNF φ
′

D1 ∨ . . . ∨Dn

?

anti-prenex, ∧I-optimized, purged∗ D∗i

?

optimal prenex normal form D∗∗i with a DNF matrix

?

explicit contradiction D∗∗∗i after the application of ∀E

Figure 1: Steps of a proof in the NNF-calculus

In the framework of the NNF-calculus, the decision problem for Di consists of defin-
ing a criterion for the ∧I applications performed to achieve multiplications of universally
quantified expressions that are necessary and sufficient to find a proof of contradiction via
unification by applying ∀E. In contrast to Definition 2.3 of [Lampert (2019)], which defines
unification for single pairs of literals of a subformula ψ, the following Definition 4.2 defines
unification for a set of unifiable pairs of literals.5

Definition 4.2. Unification is the result of replacing (universally quantified) x variables
such that identical positions6 in a unifiable pair of literals from D∗i are occupied by identical
(existentially quantified) y variables. A set of unifiable pairs of literals from D∗i is unifiable
if identical y variables can be made to occupy identical positions in all pairs of literals in
that set by applying a logically valid substitution procedure. A set of unifiable pairs of
literals is unified if all identical positions in all pairs of literals are occupied by identical y
variables.

In proofs within the NNF-calculus, identical positions in literals are unified by applying
∀E. Step 2 of the FOL-Decider computes, prior to any application of ∀E, whether (minimal)
sets of pairs of literals that would suffice to enable the deduction of explicit contradictions

5In contrast to Definition 2.3 of [Lampert (2019)], which implies that unification is a logically valid process
in the case of a single pair of literals, Definition 4.2 does not presuppose that the unification of all pairs
of literals is logically valid. It merely presupposes, in accordance with Definition 2.3 of [Lampert (2019)],
that the unification of each single pair of literals from a set of unifiable pairs of literals in the corresponding
subformula ψ is logically valid. In contrast to the unification of a set of pairs of literals, the unifiability
of such a set presupposes a logically valid procedure according to Definition 4.2. Proofs of contradiction
depend on the unifiability of sets of pairs of literals.

6I identify positions in pairs of literals with respect to the locations of the arguments of the corresponding
predicates of the literals. Thus, x1 and y1 occur in identical positions in {Fx1,¬Fy1}.



DECISION PROCEDURE FOR FOL 11

D∗∗∗i are unifiable within the (correct and complete) NNF-calculus through the generation
of D∗i and D∗∗i starting from Di.

5. Searching for ∧I-minimal Proofs

5.1. ∧I-minimal Proofs. In step 2 of the FOL-Decider, the only rule applied that in-
creases the complexity is ∧I in the direction from left to right. ∧I is applied to replace a
universally quantified x variable in different conjuncts with different existentially quantified
y variables for the purpose of unification. In step 2 of the FOL-Decider, different proof
paths are generated to enable a systematic search for ∧I-minimal proofs. Each proof path
is determined by a specific combination of ∧I applications to unify pairs of literals for the
deduction of explicit contradictions via the application of ∀E. According to the complete-
ness theorem of the NNF-calculus (Theorem 3.3 in [Lampert (2019)]), a proof based on
∧I applications in the NNF-calculus exists if Di is refutable. The search for proofs in the
NNF-calculus can be reduced to a search for ∧I-minimal proofs.

Definition 5.1. A proof of contradiction in the NNF-calculus is ∧I-minimal iff each ap-
plication of ∧I is necessary. A ∧I application in a proof of contradiction for Di is necessary
iff each conjunct in the final D∗i resulting from that ∧I application is necessary. A conjunct
in the final D∗i is necessary iff eliminating it causes no explicit contradiction D∗∗∗i to be
deduced any longer.

One can decide whether the condition for a necessary conjunct in the final D∗i is satisfied
as follows. Let C be a conjunct in the final D∗i that results from a ∧I application. Let lits
denote the literals in D∗∗∗i that are generated from the literals in C by replacing x variables
with y variables. Let M be the DNF matrix from D∗∗∗i , and let M ′ be the matrix that
is obtained from M if one eliminates the literals lits in M . Then, C in D∗i is necessary
for the proof of contradiction iff it is not the case that each disjunct of M ′ contains two
conjuncts, A and ¬A; cf. Example 5.2 in [Lampert (2019)].

Theorem 5.2. If Di is refutable, then a ∧I-minimal proof of Di exists.

Proof. From the completeness of the NNF-calculus (cf. Theorem 3.3 in [Lampert (2017)]),
it follows that a proof in the NNF-calculus exists if Di is refutable. Any proof of Di in the
NNF-calculus, however, can be reduced to a ∧I-minimal proof by eliminating unnecessary
∧I applications. Therefore, a ∧I-minimal proof of Di exists if Di is refutable.

The FOL-Decider calculates only necessary and sufficient conditions for ∧I-minimal
proofs. Either it terminates the search for a proof on a particular proof path, if a necessary
condition for a ∧I-minimal proof is not satisfied, or it returns a recipe for either (i) a ∧I-
minimal proof (normal case) or (ii) an overdetermined ∧I-minimal proof that contains a
∧I-minimal proof (abnormal case). The latter may arise due to insufficient optimization
of the ∧I-minimal proof strategy such that the proof search is not reduced to ∧I-minimal
proofs only. For the question of decidability, it is sufficient to reduce the search space to a
finite one that contains all ∧I-minimal proofs and to identify either a ∧I-minimal proof or
an overdetermined ∧I-minimal proof within this finite search space (cf. section 8).

Step 2 of the FOL-Decider generates anti-prenex disjuncts D∗i with universally quan-
tified expressions that have been multiplied due to ∧I applications. For simplicity, I also
subsume Di under expressions of the D∗i type. From this perspective, Di is the result of



12 LAMPERT

applying ∧I 0 times. The FOL-Decider does not, in fact, generate D∗∗i or D∗∗∗i . In the case
that a proof of contradiction for Di is found, it returns (i) the final purged∗7 anti-prenex
normal form D∗i , (ii) the final minimal set L of pairs of literals from D∗i that constitute the
identified ∧I-minimal proof of contradiction, (iii) a final substitution list σ that specifies
how the x variables should be replaced with y variables in L to unify all literals from L, and
(iv) the final prenex ℘ of D∗∗i that allows ∀E to be applied to replace x variables with y
variables as prescribed by σ and, consequently, to generate D∗∗∗i .

5.2. Parameters of a ∧I-minimal Proof Search: L, ℘, and sub. Step 2 of the FOL-
Decider calculates the ∧I applications that are necessary in the search for a ∧I-minimal
proof. Each proof step on a proof path consists of an application of ∧I. Its calculation
depends on the following parameters:

(1) a minimal set L of unifiable pairs of literals,
(2) an optimized prenex ℘,
(3) a specification sub of substitutions that unify the single pairs of literals in L, and
(4) a loop list.

From the substitution specification sub, a substitution list σ can be generated that
specifies, for each x variable ν, the y variables with which ν must be replaced to unify all
pairs of literals in L.

Remark 5.3. If sub specifies that an x variable xvar must be replaced with several y
variables yvars, this means that instances of xvar in different literals must be replaced
with different y variables from yvars to unify all pairs of literals in L. In accordance with
the ∧I-minimal proof strategy, this unification can be achieved in a logically valid way only
through ∧I applications.

The first three parameters specify the substitutions of the x variables and, consequently,
the applications of ∧I. Alternative specifications of these parameters result in alternative
proof paths. This section explains these three parameters in detail, whereas section 6
discusses the loop list.

Definition 5.4. A set L of unifiable pairs of literals from D∗i is minimal iff (i) unification of
these pairs of literals from D∗i is sufficient to satisfy the condition that each disjunct of the
DNF matrix of D∗i contains two contradictory literals, A and ¬A, and (ii) said condition is
no longer satisfied if any one of these pairs of literals is eliminated from L.

Thus, the unification of L is minimally sufficient to satisfy the condition that each
disjunct of the DNF matrix contains an explicit contradiction.

Definition 5.4 does not presuppose that it is possible to unify all pairs of literals from L

in a logically valid way by deducing an explicit contradiction D∗∗∗i from D∗i . It presupposes
only that each single pair of literals can be unified in a logically valid way by deducing
an explicit contradiction from the corresponding subformula ψ. As will be explained in
more detail later in this section, the parameters L, ℘ and sub are defined such that one can
conclude the (logically valid – cf. Definition 4.2) unifiability of all pairs of literals from L as
a whole only if no x variable in L must be replaced with more than one y variable in order to
unify all pairs of literals in L according to sub. If the unification of L requires any x variable
to be replaced with more than one y variable according to sub, then ∧I must be applied.

7Cf. p. 9 and Definition 5.6.



DECISION PROCEDURE FOR FOL 13

Thus, within the framework of the ∧I-minimal proof strategy, whether all pairs of literals of
a minimal set L are unifiable can be decided only by applying ∧I. This ∧I application may
cause it to be necessary to extend L in order to satisfy condition (i) specified in Definition
5.4.

Remark 5.5. The unification of each pair of literals in a minimal set L of unifiable pairs
of literals is a necessary condition for a ∧I-minimal proof on a given proof path. In the
case that no x variable must be replaced with more than one y variable according to sub,
I call sub “unambiguous”. As will be shown below on p. 19, the unambiguity of sub is a
sufficient condition for the identification of a ∧I-minimal proof.

By referring to L, one can define purged∗ anti-prenex normal forms as follows:

Definition 5.6. An anti-prenex normal form D∗i is purged∗ iff D∗i contains only literals
from L.

The Fundamental Principle of the ∧I-minimal proof strategy underlying Definition 5.1
can be specified with reference to L. To do so, I first define “selected conjuncts”. In this
definition, I presume that conjunctions of length m (m ≥ 1) contain m conjuncts.

Definition 5.7. Selected conjuncts are (i) conjuncts from D∗i that contain literals in L and
(ii) all conjuncts resulting from a ∧I application.

This definition relates to any stage of the proof. It applies to any modification of D∗i
and L.

The Fundamental Principle can be defined in relation to selected conjuncts (Definition
5.7) and necessary conjuncts (Definition 5.1) as follows:

Fundamental Principle (FP). Any once-selected conjunct must be necessary for a ∧I-
minimal proof.

Starting from the conjuncts in Di prior to any application of ∧I, FP necessitates that
once they have been selected, conjuncts will never be “dropped” in the proof search. In the
course of further ∧I applications on a proof path, the selected conjuncts can only be further
multiplied. Every step on a proof path involves the replacement of one selected conjunct
with n (n > 1) conjuncts. Consequently, L must always contain at least one literal from
each conjunct that results from an application of ∧I. If this is not the case, the proof path
can be terminated because it will not result in a ∧I-minimal proof (cf. Example 5.28, p.
24 below). If a proof is found, it is based on all selected conjuncts and, therefore, all ∧I
applications along the proof path.

To find a ∧I-minimal proof if it exists, the FOL-Decider generates all minimal sets
L. Different sets L generated from D∗i correspond to different alternative proof paths. ∧I-
minimal proofs are restricted to minimal sets L to keep the required number of substitutions
low. Consequently, the number of ∧I applications needed to replace x variables with different
y variables is kept low.

Optimized prenexes ℘ are prenexes with universal quantifiers as far to the right of
existential quantifiers as possible.

Definition 5.8. A prenex ℘ of a prenex normal form D∗∗i that is generated from the anti-
prenex normal form D∗i is optimized iff the universal quantifiers are in the scope of the
existential quantifiers to the greatest possible extent through the application of PN1-8.



14 LAMPERT

Algorithm 10.1 in [Lampert (2019)] defines the process of generating all possible opti-
mized prenex normal forms from a subformula ψ. In the case of anti-prenex normal forms
D∗i that also contain ∨, this algorithm must be extended such that PN3-4 and PN7-8 are
also considered. Because this extension is trivial and adds nothing fundamentally new, I
abstain here from presenting the full algorithm for generating all optimized prenexes from
a given anti-prenex normal form D∗i . In fact, the FOL-Decider applies a procedure that
is more effective than Algorithm 10.1 in [Lampert (2019)]. In the FOL-Decider, prenexes
℘ are represented as lists of x and y variables. Optimized prenexes are generated combi-
natorially from different sequences of x and y variables. In doing so, the algorithm refers
to purged∗ anti-prenex normal forms D∗i that contain only literals from L. The key to the
∧I-minimal proof strategy is that generating prenex normal forms from anti-prenex nor-
mal forms makes it possible to generate all and only optimized prenexes with universal
quantifiers that are in the scope of the existential quantifiers to the maximal extent. This
increases the possibility to apply ∀E for unification without needing to apply ∧I (cf. section
6 in [Lampert (2019)] and p. 19 below). Alternative possibilities for generating optimized
prenexes from anti-prenex normal forms give rise to alternative proof paths.

Step 1 of the FOL-Decider increases the number of quantifiers through the application
of PN9 and PN10 and through the conversion of the scope of universal quantifiers into
conjunctive normal form (CNF) and the scope of existential quantifiers into DNF. This is
done so that the scope of quantifiers is minimized to the maximal extent when the PN
laws are applied. For simplicity, these strategies are not applied in step 2 of the FOL-
Decider when generating anti-prenex normal forms.8 Step 2 of the FOL-Decider increases
the number of quantifiers and the number of variables they bind only as a result of ∧I
applications. Therefore, the strategy for minimizing the number of necessary ∧I applications
in a proof of contradiction is not absolute but instead depends on D∗i and D∗∗i , in which
the number of quantifiers does not change during the process of miniscoping or prenexing.9

Henceforth, I use L to refer to minimal sets of pairs of literals and ℘ to refer to optimized
prenexes.

sub specifies substitutions to be made in order to unify pairs of literals in L. Two cases
must be distinguished when specifying these substitutions. In case 1, a single pair of literals
unambiguously determines a specific y variable that must replace an x variable in a certain
position to unify that pair of literals. In case 2, a single pair of literals merely determines
that two x variables, occurring in identical positions in L1 and L2, must be replaced with
the same y variable in those positions, without dictating any specific y variable for that
purpose. Case 1 is illustrated by {Fx1,¬Fy1}; case 2, by {Fx1,¬Fx2}. In case 2, the
substitutions of the x variables may be determined by substitutions of x variables in other

8The number of ∧I applications can also be decreased by minimizing the scope of existential quantifiers
above conjunctions to the extent that this is sat-equivalent (cf. the discussion of ∃M optimization in section
7 of [Lampert (2019)]). For simplicity, however, the FOL-Decider makes use of ∃M optimization only to
identify unifiable pairs of literals. ∃M optimization is applied neither when generating FOLDNFs in step 1
nor when generating anti-prenex normal forms D∗i in step 2. Nevertheless, ∃M optimization is an optional
tool in step 1 of the FOL-Decider (cf. also footnote 9 in [Lampert (2019)]).

9The number of ∧I applications on a proof path is also related to the extent to which the FOLDNFs
and D∗i are simplified. The number of ∧I applications could also, of course, be minimized via extensive
minimization procedures such as those described in [Lampert (2017)]. However, only rare use is made of the
simplification of FOLDNFs in step 1 of the FOL-Decider. In step 2, the D∗i are merely simplified by deleting
literals that are not included in L (purging) to generate optimized prenexes ℘ or to return the final D∗i .



DECISION PROCEDURE FOR FOL 15

unifiable pairs of literals in L (case 2.1 ), or they may not (case 2.2 ). In case 2.1, multiple
alternative possibilities for replacing x variables with y variables for unification may arise.

Example 5.9. Let Di be given as follows:

∃y1Gy1y1 ∧ ∀x1(Fx1 ∨ ∀x3(∀x4Hx1x3x4 ∨ Jx1x3)) ∧
∀x2∃y2(¬Fy2 ∧ ∀x5(¬Gx2x5 ∨ ¬Hx2y2x5) ∧ ¬Jx2y2) (5.1)

There is exactly one minimal set L of unifiable pairs of literals for (5.1):

{{Fx1,¬Fy2}, (5.2)

{Gy1y1,¬Gx2x5}, (5.3)

{Hx1x3x4,¬Hx2y2x5}, (5.4)

{Jx1x3,¬Jx2y2}} (5.5)

There is also only one optimized prenex ℘ for (5.1), which is represented by a list of x
and y variables, according to the FOL-Decider:

{y1, x2, y2, x1, x3, x4, x5} (5.6)

In (5.2), x1 must be replaced with y2; in (5.3), x2 must be replaced with y1, and x5 must
be replaced with y1; in (5.4), x1 and x2 must both be replaced with the same y variable, x3
must be replaced with y2, and x4 and x5 must both be replaced with the same y variable;
and in (5.5), x1 and x2 must both be replaced with the same y variable, and x3 must be
replaced with y2. In contrast to x3, x4 and x5, at least one of the x variables x1 and x2
must replaced with more than one y variable to unify all pairs of literals in (5.2) to (5.5).
Their possible substitutions in identical positions in (5.4) and (5.5) are determined by the
specifications of their substitutions in (5.2) and (5.3). Since x1 must be replaced with y2 in
(5.2) and x2 must be replaced with y1 in (5.3) (case 1 ), four possible substitutions for x1
and x2 in (5.4) and (5.5) arise through combinatorial means (case 2.1 ):

(1) x1 and x2 may be replaced with y1 in both (5.4) and (5.5),
(2) x1 and x2 may be replaced with y2 in both (5.4) and (5.5),
(3) x1 and x2 may be replaced with y1 in (5.4) and with y2 in (5.5), or
(4) x1 and x2 may be replaced with y2 in (5.4) and with y1 in (5.5).

(1) necessitates the replacement of x1 with y1 in addition to its replacement with y2 in (5.2)
and (2) necessitates the replacement of x2 with y2 in addition to its replacement with y1 in
(5.3). In both cases, however, only x1 (in (1)) or only x2 (in (2)) must be replaced with more
than one y variable to unify the pairs of literals in L. By contrast, (3) and (4) necessitate
the replacement of both x1 and x2 with both y1 and y2. The FOL-Decider realizes all of
the combinatorially possible substitutions for case 2.1 along different proof paths. Thus,
specifications sub such as (3) and (4) that result in more substitutions than other possible
specifications sub such as (1) and (2) are not excluded. The reason for this is that it cannot
be guaranteed that an initial specification sub that requires more applications of ∧I may
not result in a sub that requires fewer applications of ∧I at a later stage along the proof
path.10 If all combinatorially possible substitutions for case 2.1 are generated in alternative

10This is due to minimal extensions, as necessitated by ∧I applications, of minimal sets L of literals. The
following example illustrates such a case.



16 LAMPERT

specifications sub, then no ∧I-minimal proof will be excluded. It might be possible to define
criteria for restricting the number of alternative specifications sub without excluding any
∧I-minimal proofs. However, no such criteria are defined in the FOL-Decider for now. This

Example 5.10. Let Di be given as follows:

∀x1∃y1Fx1y1 ∧ ∀x2∀x5(∀x7(Fx5x7 ∨ ¬Fx2x7) ∨ ¬Fx5x2) ∧
∀x3(∃y2(Fx3y2 ∧Gy2) ∨Gx3) ∧ ∀x4(∀x6(¬Fx4x6 ∨ ¬Gx6) ∨ ¬Gx4) (5.7)

One of the several initial sets L of pairs of literals is as follows:

{{Gx3,¬Gx4}, (5.8)

{Gx3,¬Gx6}, (5.9)

{Gy2,¬Gx4}, (5.10)

{Gy2,¬Gx6}, (5.11)

{Fx1y1,¬Fx4x6}} (5.12)

This selection of pairs of literals results in a ∧I-minimal proof only if one specifies that x3 and x4 are both
to be replaced with y2 in (5.8) and that x3 and x6 are both to be replaced with y1 in (5.9). This determines
that both x3 and x6 must be replaced with y1 and y2. This would be avoided if it were to be specified that
x3 and x6 were both to be replaced with y2 in (5.9). However, this would cause the ∧I-minimal proof, in
which ∧I is applied to replace both x6 and x3 with y1 and y2 (or suitable derivates of y1 and y2), not to be
found. By contrast, if sub initially specifies that both x3 and x6 must be replaced with y1 and y2, then a
∧I-minimal proof is found with the following D∗i :

∀x1∃y1Fx1y1 ∧ ∀x2∀x5(∀x7(Fx5x7 ∨ ¬Fx2x7) ∨ ¬Fx5x2) ∧
∀x31(∃y21(Fx31y21 ∧Gy21) ∨Gx31) ∧ (∃y22Gy22 ∨ ∀x32Gx32) ∧ (5.13)

∀x41(∀x61(¬Fx41x61 ∨ ¬Gx61) ∨ ¬Gx41) ∧ ∀x42(∀x62(¬Fx42x62 ∨ ¬Gx62) ∨ ¬Gx42)

In the course of applying ∧I to multiply ∀x3, ∃y2 is also multiplied because ∃y2 is in the scope of ∀x3 in
(5.7). On the proof path that results in the proof of contradiction, extending L determines that Fx32y22 is
not a member of a pair of literals contained in L. Thus, Fx32y22 is deleted from the final D∗i (5.13). This,
in turn, determines that ∃y22 is not in the scope of ∀x32 as a result of the scope minimization leading to
(5.13). This makes it possible to generate the optimized (and optimal) prenex given in (5.25), with y22 to
the left of x32 , which allows x32 to be replaced with y22 by applying ∀E. As a consequence of multiplying
∀x6, ∀x4 is also multiplied (cf. p. 20). In contrast to x61 and x62 , however, x41 and x42 are not replaced
with different y variables in the final ∧I-minimal proof. The minimal set L of pairs of literals given in (5.8)
- (5.12) must be extended due to the sequence of ∧I applications. This results in the following final L:

{{Gx32 ,¬Gx41}, (5.14)

{Gx31 ,¬Gx61}, (5.15)

{Gy22 ,¬Gx41}, (5.16)

{Gy22 ,¬Gx62}, (5.17)

{Gx32 ,¬Gx42}, (5.18)

{Gy21 ,¬Gx62}, (5.19)

{Fx1y1,¬Fx41x61}, (5.20)

{Fx5x7,¬Fx42x62}, (5.21)

{Fx1y1,¬Fx5x2}, (5.22)

{Fx31y21 ,¬Fx2x7}} (5.23)

The following substitution list σ specifies how to replace x variables with y variables to unify all pairs of
literals in (5.14) - (5.23):

{{x1, y22}, {x2, y1}, {x5, y22}, {x7, y21}, {x31 , y1}, {x32 , y22},
{x41 , y22}, {x42 , y22}, {x61 , y1}, {x62 , y21}} (5.24)



DECISION PROCEDURE FOR FOL 17

is one of the reasons why an enormous number of alternative proof paths are generated in
step 2 of the FOL-Decider.

To specify sub further, let us introduce the concept of xx positions of a pair of unifi-
able literals. Roughly speaking, identical positions in two literals forming a unifiable pair
{L1, L2} are xx positions iff (i) they are occupied by x variables and (ii) the occurrence of x
and y variables in certain positions in L1 and L2 does not determine specific y variables that
must replace x variables occurring in identical positions for the sake of unification. Thus,
xx positions are relevant to case 2.1 and case 2.2. To define xx positions more precisely
and algorithmically, let us recall Definitions 7.3 and 7.5 of [Lampert (2019)], which define
xx lists as well as both xy and yx pairs:

Definition 7.3: The xx lists of a pair of connected literals {L1, L2} are generated as
follows:
(1) If an x variable ν1 and an x variable ν2 occur in identical positions in L1 and

L2, then ν1 and ν2 are members of the same xx list.
(2) If the x variables ν1 and ν2 are members of the same xx list and if ν2 and the

x variable ν3 are also members of the same xx list, then ν1, ν2 and ν3 are all
members of the same xx list.

(3) (1) and (2) are the only conditions that determine members of the same xx
list.

Definition 7.5: An xy pair is an ordered list {xvar, yvar} consisting of an x variable
xvar and a y variable yvar, where xvar occurs in L1 in a position n and yvar occurs
in L2 in the same position n. A yx pair is an ordered list {yvar, xvar} consisting
of a y variable yvar and an x variable xvar, where yvar occurs in L1 in a position
n and xvar occurs in L2 in the same position n.

Based on these definitions, xx positions are defined as follows:

Definition 5.11. Let all x variables of L1 be subscripted with −1, and let all x variables
of L2 be subscripted with −2. Then, identical positions in L1 and L2 are xx positions iff
(i) they are occupied by x variables and (ii) these x variables are members of xx lists, which
contain no x variables that are members of an xy or yx pair.

The condition specified in the first sentence of the above definition is important because
it cannot be presupposed that the same x variable is to be replaced with the same y variable
in both L1 and L2 (cf. Remark 5.13).

Note that neither other pairs of literals in the same L nor the order of the quantifiers
in D∗i that bind variables from {L1, L2} are considered in the definition of xx positions.

Example 5.12. In {Fx1x1,¬Fx2y1}, x1 and x2 do not occur in xx positions because x1
must be replaced with y1 in position 2 of Fx1x1 for unification. Therefore, x1 must also
be replaced with y1 in position 1 in the same literal. Consequently, the first position in L1
and the first position in L2 are not xx positions. The occupation of identical positions in
L1 and L2 by x variables is a necessary but not a sufficient condition for these positions to
be xx positions.

The following prenex ℘ allows for these substitutions:

{y22 , x1, y1, x31 , y21 , x7, x5, x2, x61 , x41 , x62 , x42 , x32} (5.25)

If one generates the prenex normal form D∗∗i with the prenex given in (5.25) from the anti-prenex normal
form given in (5.13), then all substitutions in (5.24) can be realized by applying ∀E.



18 LAMPERT

xx positions can be occupied by the same x variable, as in the case of, e.g., {Fx1,¬Fx1}.
Example 5.13. It might well be that the same x variable is to be replaced with different
y variables in L1 and L2. For example, in {Fx1y1x3,¬Fx2x1y1}, x1 must be replaced only
with y1 in L2; in L1, however, x1 occurs in an xx position. Therefore, the pair of literals
does not dictate that x1 must be replaced with y1 in the first position of L1. Thus, the FOL-
Decider proves that the formula ∀x1∃y1(∀x3Fx1y1x3∧∀x2¬Fx2x1y1) is refutable by means
of a single application of ∧I to replace x11 in Fx11y11x31 with y0 and x12 in ¬Fx22x12y12
with y11 in the resulting D∗∗i .11

Definition 5.14. A specification sub of substitutions specifies a set of substitutions of x
variables in all positions in literals in L such that all single pairs of literals are unified.

The FOL-Decider combines L and sub into a list denoted by sub/L, in which each pair
of literals from L is preceded by a list that specifies how its x variables are to be substituted
according to sub. Each sub for a single pair of literals is a list of three lists. The first
list specifies which y variables must replace x variables due to unification requirements for
that single pair of literals (cf. case 1 on p. 14). The second and the third list concern
xx positions. The second list specifies how x variables must be replaced with y variables
as dictated by substitutions in other pairs of literals in L (cf. case 2.1 on p. 14). The
third list specifies x variables without specific substitution requirements; it simply specifies
which of them must be replaced with the same y variable (cf. case 2.2 on p. 15). Each of
these three lists concerns the substitution requirements for x variables in certain positions
in the corresponding pair of literals. These lists and the corresponding pair of literals
together dictate how the variable in each position that is occupied by an x variable must be
substituted. The generation of sub/L and its modifications and extensions all play crucial
roles in the FOL-Decider.

Example 5.15. The sub/L for (5.2) - (5.5) from Example 5.9 that corresponds to specifi-
cation (1) for the xx positions of x1 and x2 in (5.4) and (5.5) (cf. p. 15) is as follows:

{{{{{x1, y2}}, {}, {}}, {Fx1,¬Fy2}}, (5.28)

{{{{x2, y1}, {x5, y1}}, {}, {}}, {Gy1y1,¬Gx2x5}}, (5.29)

{{{{x3, y2}}, {{x1, x2, y1}, {x4, x5, y1}, {}}, {Hx1x3x4,¬Hx2y2x5}}, (5.30)

{{{{x3, y2}}, {{x1, x2, y1}}, {}}, {Jx1x3,¬Jx2y2}}} (5.31)

Remark 5.16. The substitutions of x variables in xx positions that are specified in sub

depend on the pairs of literals from L. As discussed on p. 19f., the replacement of x variables
with y0 to satisfy condition P℘ additionally depends on optimized prenexes ℘ and is also
considered in sub.

The FOL-Decider generates all possible alternative specifications sub for the unification
of the pairs of literals in L.

11The resulting D∗∗i is

∀x11∃y11∀x12∃y12∀x31∀x22(Fx11y11x31 ∧ ¬Fx22x12y12) (5.26)

This D∗∗i is generated from the following purged∗ D∗i :

∀x11∃y11∀x31Fx11y11x31 ∧ ∀x12∃y12∀x22¬Fx22x12y12 (5.27)

Note that ∃M (cf. p. 10 in [Lampert (2019)]) is not applied by default in step 1 of the FOL-Decider
(cf. footnote 8 above and footnote 9 in [Lampert (2019)]). Therefore, the FOL-Decider proves that
∀x1∃y1(∀x3Fx1y1x3 ∧ ∀x2¬Fx2x1y1) is refutable by means of a single application of ∧I.



DECISION PROCEDURE FOR FOL 19

Definition 5.17. A substitution list σ for a set L of unifiable pairs of literals is a list
consisting of lists that specify, for each x variable from L, which y variables must replace it
according to sub for the unification of all pairs of literals in L.

Remark 5.18. The FOL-Decider generates substitution lists σ from sub.

Example 5.19. The substitution list σ for the sub given in (5.28) to (5.31) is

σ : {{x1, y1.y2}, {x2, y1}, {x3, y1}, {x4, y1}, {x5, y1}} (5.32)

Strictly speaking, the FOL-Decider differentiates between substitution lists, which con-
tain only x variables that are to be replaced with at least one y variable according to sub,
and final substitution lists, which contain all x variables from sub. This distinction concerns
x variables ν for which no specific y variables are specified in sub to replace them (cf. case
2.2, p. 15). Final substitution lists include lists of the form {ν, y0} for these x variables.
However, the final substitution lists are a rather insignificant detail of the FOL-Decider;
they are relevant only in the case that a proof is found. Thus, I abstain from distinguishing
between these two kinds of substitution lists in the following. Unless the substitution lists
σ at hand are those returned by the FOL-Decider in the case that a ∧I-minimal proof is
found, I refer to substitution lists σ in the sense of the first meaning.12

Definition 5.20. A substitution list σ is unambiguous iff each partial list in σ is of length
2 (i.e., contains exactly one y variable).

Remark 5.21. σ is unambiguous iff sub is unambiguous (cf. p. 13).

As soon as σ is unambiguous apart from the introduction of y0 into sub to satisfy P℘,
sub must satisfy the Prenex Principle P℘.

Prenex Principle (P℘). Each x variable ν of an optimized prenex ℘ appears to the right
of at least one y variable that is to be substituted for ν according to the specification sub of
substitutions.

P℘ ensures that an explicit contradiction D∗∗∗i can be deduced from Di given that σ
is unambiguous and P℘ is satisfied. In this case, the anti-prenex normal form D∗i that is
deduced from Di via ∧I applications can be purged∗ and converted into a prenex normal
form D∗∗i with an optimized prenex ℘ that allows ∀E to be applied to replace all x variables
with appropriate y variables according to σ. Because σ is generated from sub, this is
sufficient to unify all literals from L. Consequently, any disjunct of the DNF matrix of D∗∗∗i
contains an explicit contradiction. Therefore, the unambiguity of σ is a sufficient criterion
for a ∧I-minimal proof once P℘ is considered.

Thus, ∧I must be applied only if σ is not unambiguous. If P℘ is not satisfied for an x
variable ν, then ν must additionally be replaced with y0 in order to satisfy P℘. By defini-
tion, ∃y0 precedes any optimized prenex ℘. A specification sub of substitutions considers
P℘ as soon as σ is unambiguous apart from satisfying P℘.13 The FOL-Decider considers

12The algorithm for generating substitution lists σ concerns the substitution of x variables from a minimal
set of unifiable pairs of literals in step 2 of the FOL-Decider. This algorithm must be distinguished from
Algorithm 9.1 described in section 9 of [Lampert (2019)], which generates maximal substitution lists for
a single pair of connected literals. The generation of substitution lists σ in step 2 of the FOL-Decider
serves not for deciding whether connected literals are unifiable but rather for deciding whether further ∧I
applications are necessary in the search for a ∧I-minimal proof along a given proof path.

13If P℘ were to be considered in previous proof steps with ambiguous substitution lists σ, the necessity to
introduce substitutions of x variables with y0 would not be kept to a minimum. Example 5.10 in footnote 10



20 LAMPERT

all combinatorial possibilities for the introduction of y0 to satisfy P℘ (for an illustration,
cf. Example 5.28).14 Thus, introducing y0 for the sake of satisfying P℘ results in further
alternative specifications sub and, consequently, alternative substitution lists σ, thus neces-
sitating alternative proof paths. These alternative proof paths consider all combinatorial
variants of minimal sets L of unifiable pairs of literals, optimized prenexes ℘ and alternative
substitution specifications sub. If the substitution of x variables with y0 is no longer nec-
essary to satisfy P℘ subsequent to ∧I applications, this is also considered via corresponding
modifications of sub (cf. exception 2 on p. 26).

An optimized prenex ℘ is optimal iff σ is unambiguous given that P℘ is considered.

Definition 5.22. An optimized prenex ℘ is optimal iff each x variable µ in ℘ is to the right
of the y variable ν that is to replace it according to the unambiguous substitution list σ.

5.3. ∧I Applications. Applications of ∧I are necessary only if σ is ambiguous. In this
case, at least one x variable µ in sub must be multiplied to enable the substitution of
µ1, . . . , µn with n different y variables.

Definition 5.23. An x variable µ is multiplied iff the expression ∀µA(µ) in D∗i is multiplied
by applying ∧I.

To avoid the application of DIS2 when generating anti-prenex normal forms in step 2 of
the FOL-Decider, it is, strictly speaking, not only the expression ∀µA(µ) that is multiplied;
instead, what is multiplied is the entire expression that contains all universal quantifiers and
occurrences of ∨ preceding ∀µA(µ) in the logical hierarchy of D∗i up to the next occurrence
of some existential quantifier or ∧. This multiplied expression will always be preceded by a
universal quantifier (cf., e.g., Example 5.10 in footnote 10: to multiply x6, the expression
preceded by ∀x4 is multiplied, as seen in the last line in (5.13)). For simplicity, I will still
use ∀µA(µ) to refer to the expression that is multiplied, which may be preceded by universal
quantifiers other than ∀µ.
∀µA(µ) is multiplied n − 1 times by applying ∧I to generate n conjuncts such that

µi is replaced with the i-th of the n y variables with which µ must be replaced according
to σ. To distinguish among different ∧I applications for the multiplication of different x
variables, I refer to all of the n− 1 applications of ∧I that are necessary to multiply one x
variable µ as “one ∧I application”. The steps along a proof path are numbered with respect
to the ∧I applications that are performed to multiply x variables. Although x variables ν
(ν 6= µ) that are bound by universal quantifiers occurring in ∀µA(µ) are also multiplied
when multiplying ∀µA(µ), only µ is “the multiplied x variable”, because the purpose of
applying ∧I is to replace instances of µ in different conjuncts with different y variables.

Definition 5.24. One ∧I application consists of the replacement of the universally quanti-
fied expression ∀µA(µ) with a conjunction of n conjuncts ∀µ1A(µ1), . . . ,∀µnA(µn), in which
all variables bound by quantifiers of the i-th conjunct are subscripted with i for rectification.

on p. 15 illustrates this. Given an optimized prenex in which x3 is to the left of y1 and y2, x3 would have to
be additionally replaced with y0. However, this additional substitution is not necessary for the ∧I-minimal
proof described in Example 5.10.

14Again, it might be possible to define criteria to restrict the possible combinations without excluding
any ∧I-minimal proofs. However, no such criteria are defined in the FOL-Decider for now.



DECISION PROCEDURE FOR FOL 21

In the course of the ∧I application, L, ℘, and sub must be modified and extended. In
the following, I distinguish L and sub prior to a ∧I application from their modifications L′

and sub′ directly subsequent to the ∧I application and their extensions L′′ and sub′′ prior
to possible further ∧I applications. The resulting L′′ and sub′′ subsequent to a given ∧I
application are identical to the L and sub prior to the next ∧I application. In the case of
℘, I distinguish ℘ prior to a ∧I application from the subsequent modified and extended ℘′

prior to possible further ∧I applications. However, I will speak of L, ℘, and sub in general
if I am not considering their modifications or extensions.

Subsequent to a ∧I application, the FOL-Decider first modifies L (resulting in L′) and
sub (resulting in sub′). However, if ∀µA(µ) contains ∨, then L′ must also be extended
subsequent to the ∧I application (cf. section 5.4 for details). This extension results in
L′′ and is considered only after the modification of L and sub to L′ and sub′. During the
generation of sub, sub′ and sub′′, the substitutions of x variables in positions other than
xx positions are specified prior to those in xx positions, as the latter substitutions depend
on the former. However, I omit these details in the following. ℘ is modified and extended
(resulting in ℘′) only after L′′ is generated because it refers to L′′. Finally, sub′ is extended to
sub′′; this extension is performed last because it depends on L′′ and ℘′. These modifications
and extensions are explained in this and the following section.

Subsequent to the application of ∧I, the index depths of variables bound by quantifiers
occurring in ∀µA(µ) are increased by 1. The modification of L, sub and ℘ basically concerns
the replacement of “ancestors” with “descendants”.

Definition 5.25. Let v be a variable bound by a quantifier in ∀µA(µ), and let v1 to vn
denote the variables resulting from the ∧I application. Then, the variables v1, . . . , vn are
descendants of v, and v is their ancestor.

L′ and sub′ consider the replacement of ancestors with descendants.
The FOL-Decider orders the y variables with which µ must be replaced according to

σ in a list yvars that begins with y0. µi in the i-th conjunct must then be replaced with
the i-th y variable from yvars. Thus, the corresponding literals in L, in which µ must be
replaced with the i-th y variable from yvars, are replaced with the literals from the i-th
conjunct in D∗i . Consequently, all variables of these literals that are bound by quantifiers
occurring in ∀µiA(µi) are subscripted with i in L′. The substitutions in sub are adjusted
likewise to obtain the modified sub′.

In addition to literals containing µ, literals in L that do not contain µ but do contain
variables bound by quantifiers occurring in ∀µA(µ) must be modified subsequent to the ∧I
application. All combinatorial possibilities for replacing literals in L that do not contain
µ but do contain variables bound by quantifiers occurring in ∀µA(µ) with literals from
different conjuncts of the result of the ∧I application are realized in alternative sets L′ and
considered in the respective specifications sub′. The only requirements are that the pairs
of literals still be unifiable and that the selection of literals does not violate FP. Alternative
selections of literals from the n conjuncts give rise to alternative proof paths.

Furthermore, all alternative ways of subscripting a y variable ν that replaces x variables
in xx positions according to sub and that is bound by an existential quantifier occurring in
∀µA(µ) are realized in alternative substitution specifications sub′. Such alternatives arise
in the case that the corresponding x variables must be replaced with different descendants
νj and νk (j, k ∈ N and ≤ n, j 6= k) of the ancestor y variable ν in sub′ in positions that are
not xx positions. It might be possible to define criteria to restrict the number of alternative



22 LAMPERT

sets L′ and alternative specifications sub′ without excluding ∧I-minimal proofs. However,
no such criteria are defined in the FOL-Decider for now. This is another reason why an
enormous number of alternative proof paths are generated in step 2 of the FOL-Decider.

The differences between sub and sub′ described so far concern the replacement of
ancestors with descendants. However, there is one additional difference (= exception 1 ).
Let ν (ν 6= µ) be an x variable occurring in ∀µA(µ). Let ν be replaced with some y variable
ρ in some position that is not an xx position (case 1 on p. 14), and consequently, let ν be
replaced with ρ in some other position that is an xx position (case 2.1 on p. 14). Since ν
is multiplied in the course of the ∧I application, it may well be that its descendant νi no
longer needs to be replaced with ρ (or some descendant ρj) in some position that is not an
xx position due to L′. Consequently, there is also no need to replace νi with ρ (or some
descendant ρj) in xx positions, as long as this is also not required due to other x variables
that share some xx position with νi. This possibility is considered when modifying sub, to
the effect that the requirement to replace νi in xx positions with ρ (or some descendant ρj)
is discarded in sub′. This keeps the number of required substitutions and, consequently,
the number of necessary ∧I applications low.

In addition to L and sub, ℘ must also be modified and extended subsequent to ∧I
applications. First of all, this is required because quantifiers from ∀µA(µ) are multiplied.
Furthermore, additional quantifiers may need to be considered in the course of extending
L′ to L′′ (cf. section 5.4 for details). In the following, however, I abandon the term “modifi-
cation of ℘” and simply speak of “extensions of ℘”, including the replacement of ancestors
with their descendants. Before explaining extensions of L′, I specify the Principle of Prenex
Extension PE℘ because the principle that guides the extension of ℘ depends simply on the
generation of all optimized prenexes ℘+ involving the variables in L′′ (however L′′ is gen-
erated). From all these prenexes ℘+, the FOL-Decider selects only those prenexes ℘′ that
satisfy the following principle:

Principle of Prenex Extension (PE℘). Prenex extensions ℘′ must maintain the possi-
bilities provided by ℘ for replacing x variables with y variables by means of ∀E.

The requirement of maintaining substitution possibilities is specified by the following
three conditions:

(1) A y variable ν must not appear to the right of an x variable µ in ℘′ if ν is to the
left of µ in ℘ unless ∃ν is in the scope of ∀µ in D∗i after the extension of L′ to L′′.15

(2) For each ancestor v occurring in ℘, generate the set of its descendants that occur
in ℘+. Let k be the number of resulting non-empty sets of descendants, and let

15This exception is necessary because optimized prenexes are generated in relation to purged∗ D∗i . The
following example illustrates this:

∀x1∃y1(∃y2(∃y3(Gy1y3 ∧Gy2y3) ∧ ∃y4∀x3¬Hy4y2x3) ∧ ∀x4Hy1x4x1) ∧
∀x2(∀x5∀x8Hx5x2x8 ∨ ∀x6∀x9¬Hx2x6x9 ∨ ∀x7¬Gx2x7) (5.33)

One of the two minimal sets L of (5.33) is {{Gy2y3, ¬Gx2x7}, {Hx5x2x8, ¬Hy4y2x3}, {Hy1x4x1,
¬Hx2x6x9}}. With regard to this L, Gy1y3 is deleted during the process of purging. This results in
the following optimized prenex ℘:

{y2, y3, y4, x1, y1, x2, x3, x4, x5, x6, x7, x8} (5.34)

However, the second conjunct of (5.33) must be multiplied to prove the refutability of (5.33) because x2
must be replaced with both y1 and y2 in the considered L. In the course of the ∧I application, L′ must be
extended by {Gy1y3,¬Gx22x72}. From this, it follows that Gy1y3 is now part of D∗i . Consequently, y2, y3,
and y4 cannot be to the left of x1 in ℘′.



DECISION PROCEDURE FOR FOL 23

r1 to rk be their cardinalities. For these sets, generate their Cartesian product.
Each member of the Cartesian product contains exactly one descendant for each
ancestor. For each of the r1 · . . . · rk members mi of the Cartesian product, generate
the sequence ℘∗ from ℘+ by replacing the descendants of mi with their ancestor.
℘+ is a prenex ℘′ that satisfies PE℘ only if at least one of the resulting r1 · . . . · rk
prenexes ℘∗ satisfies condition (1) compared to ℘. This test ensures that for each
ancestor in ℘, at least one descendant takes over its relative position in ℘′.

(3) Each descendant µi of the multiplied x variable µ must be to the right of the y
variable with which µi must be replaced according to sub′, if P℘ is satisfied prior to
the ∧I multiplication.16

PE℘ ensures that the necessity to replace x variables additionally with y0 is kept rare
by the extension of ℘. Furthermore, condition (3) of PE℘ ensures that all replacements of
µ1 to µn with the respective y variables from sub′ can be achieved by applying ∀E to a
corresponding prenex normal form D∗∗i given that P℘ is satisfied prior to the ∧I application.
This was the stated purpose of the ∧I application.

16The if-clause “if P℘ . . .” is necessary because in the search for proofs, x variables are multiplied without
considering the Prenex Condition P℘ as long as σ is ambiguous (cf. p. 19 and footnote 13). This is illustrated
in the following example.

Example 5.26. Let Di be given as follows:

∀x1∃y1(∀x2∀x6Fx2x1y1x6 ∧ ∀x3∀x7Gx3x1y1x7 ∧ ∀x4∀x8Hx4x1y1x8 ∧
∀x5(∃y2∀x9¬Fx5y2x9y1 ∨ ∃y3∀x10¬Gx5y3x10y1 ∨ ∀x11∀x12¬Hx5x11x12y1)) (5.35)

The FOL-Decider finds a ∧I-minimal proof in which the final D∗i is as follows:

∀x11∃y11∀x21∀x61Fx21x11y11x61 ∧
∀x121∃y121 (∀x421∀x821Hx421x121 y121x821 ∧

∀x521 (∃y221∀x921¬Fx521 y221x921 y121 ∨ (5.36)

∃y321∀x1021¬Gx521 y321x1021 y121 ∨
∀x1121∀x1221¬Hx521x1121x1221 y121 )) ∧
∀x122∃y122∀x322∀x722Gx322x122 y122x722

(5.36) results from a first application of ∧I to replace descendants of x1 with descendants of y2 and y3
and a second application of ∧I to additionally replace a descendant of x12 with y0 in order to satisfy P℘.
This ∧I application would be omitted if one were to neglect the if-clause in condition (3). The ∧I-minimal
proof of contradiction is based on the following final L, σ, and ℘.
L:

{{Fx21x11y11x61 ,¬Fx521 y221x921 y121 }, (5.37)

{Hx421x121 y121x821 ,¬Hx521x1121x1221 y121 }, (5.38)

{Gx322x122 y122x722 ,¬Gx521 y321x1021 y121 }} (5.39)

σ:

{{x11 , y221 }, {x21 , y0}, {x61 , y121 }, {x121 , y0}, {x122 , y321 }, {x322 , y0}, {x421 , y0},
{x521 , y0}, {x722 , y121 }, {x821 , y121 }, {x921 , y11}, {x1021 , y122 }, {x1121 , y0}, {x1221 , y121 }} (5.40)

℘:

{y0, x121 , y121 , x521 , y221 , y321 , x11 , y11 , x122 , y122 ,
x21 , x61 , x821 , x421 , x921 , x1021 , x1221 , x1121 , x322 , x722 } (5.41)



24 LAMPERT

Remark 5.27. PE℘ is not a necessary principle for a ∧I-minimal proof search. For a
decision procedure for Di based on a ∧I-minimal proof search, it is sufficient to assume the
finiteness of the combinatorial possibilities for generating prenexes (cf. section 8).

Alternative possibilities for extending ℘ to ℘′ are considered on alternative proof paths.
The modifications and extensions of L, ℘, and sub consider all alternatives that might result
in a ∧I-minimal proof.

Example 5.28. This example illustrates how a ∧I-minimal proof is found when considering
substitutions with y0 to satisfy condition P℘. Extensions of L′ (cf. section 5.4) need not be
considered in this example.

Let Di be given as follows:

∀x1∃y1Fx1y1 ∧ ∀x2(∀x3¬Fx2x3 ∨ ∀x4¬Fx4x2) (5.42)

There is exactly one minimal set L of unifiable pairs of literals in the case of (5.42):

{{Fx1y1,¬Fx2x3}, (5.43)

{Fx1y1,¬Fx4x2}} (5.44)

Also, there is exactly one optimized prenex ℘:

{x1, y1, x2, x3} (5.45)

x3 must be replaced with y1 in (5.43), and x2 must be replaced with y1 in (5.44). x1
and x2 must be replaced with the same y variable in (5.43), and x1 and x4 must be replaced
with the same y variable in (5.44). If P℘ is not considered, then x1 and, consequently,
x4 must be replaced only with y1 because x2 must be replaced with y1 in (5.44). Thus,
σ is unambiguous as long as P℘ is not considered. However, P℘ is not satisfied because
y1 is not to the left of x1 in (5.45). ∀E cannot be applied to replace x1 with y1 in the
corresponding prenex normal form with the optimized prenex given in (5.45). Therefore, x1
must additionally be replaced with y0 in order to satisfy P℘. Either (1) x1 and, consequently,
x2 must be replaced with y0 in (5.43); (2) x1 and, consequently, x4 must be replaced with
y0 in (5.44); or (3) both. For completeness, I also note the special case (4), which specifies
that x1 must be replaced with y0 in addition to y1 but not in the xx positions in (5.43) and
(5.44). This case is also considered in the FOL-Decider. Cases (1) to (4) give rise to the
following 4 substitution lists, σ(1) to σ(4):

(1) σ(1) = {{x1, y0}, {x2, y0, y1}, {x3, y1}, {x4, y0}},
(2) σ(2) = {{x1, y0, y1}, {x2, y1}, {x3, y1}, {x4, y0}},
(3) σ(3) = {{x1, y0, y1}, {x2, y0, y1}, {x3, y1}, {x4, y1}},
(4) σ(4) = {{x1, y0, y1}, {x2, y1}, {x3, y1}, {x4, y1}}.
These 4 variants correspond to 4 alternative proof paths. The special case (4), with σ(4),

does not result in a ∧I-minimal proof because x11 is not replaced with y0 in Fx11y11 . Instead,
x12 is replaced with y11 in Fx12y12 . Consequently, L′ does not contain any literal from the
conjunct ∀x11∃y11Fx11y11 that results from multiplying ∀x1∃y1Fx1y1. This contradicts the
Fundamental Principle FP (cf. p. 13). Therefore, this proof path terminates because it
contradicts a principle of the ∧I-minimal proof search. The FOL-Decider first realizes all
combinatorial possibilities (1) to (4) and, consequently, σ(1) to σ(4). The proof path based
on σ(4) is then abandoned subsequent to the ∧I application because it violates FP.



DECISION PROCEDURE FOR FOL 25

In the cases of variants (1) and (3), σ(1) and σ(3) cause it to be necessary to multiply
x2. This does not result in a ∧I-minimal proof. Therefore, let us consider only variant (2),
with σ(2). According to σ(2), only x1 must be multiplied. This results in the following D∗i :

∀x11∃y11Fx11y11 ∧ ∀x12∃y12Fx12y12 ∧ ∀x2(∀x3¬Fx2x3 ∨ ∀x4¬Fx4x2) (5.46)

A ∧I-minimal proof is found if one replaces x11 with y0 to unify {Fx11y11 ,¬Fx4x2}
and replaces x12 with y11 to unify {Fx12y12 ,¬Fx2x3}. This proof rests on the unification
of the following pairs of literals from (5.46):

{{Fx11y11 ,¬Fx4x2}, {Fx12y12 ,¬Fx2x3}} (5.47)

It also rests on the following substitution list σ:

{{x11 , y0}, {x12 , y11}, {x2, y11}, {x3, y12}, {x4, y0}} (5.48)

The corresponding optimal prenex ℘ is as follows:

{y0, x11 , y11 , x12 , y12 , x2, x3, x4} (5.49)

If one generates the corresponding optimal prenex form D∗∗i from (5.46) with the opti-
mal prenex given in (5.49), then one can deduce an explicit contradiction D∗∗∗i by applying
∀E.

5.4. Extending L′ and sub′. If the multiplied expression ∀µA(µ) contains ∨, then L′, ℘,
and sub′ must be extended.

According to conditions (i) and (ii) in Definition 5.4, the following two principles hold
for the extension of L′.

⊥-Principle (⊥P). L′′ must satisfy the condition that each disjunct of the DNF matrix of
D∗i contains two conjuncts, A and ¬A, given that all pairs of literals in L′′ are unified.

Minimal L-Principle (MLP). L′′ is minimally sufficient17 to satisfy ⊥P.

Both principles also hold for any L prior to any application of ∧I. MLP avoids unnecessary
∧I applications that may violate the Fundamental Principle FP of the ∧I-minimal proof
search strategy.

In addition to applying the Fundamental Principle FP, the FOL-Decider restricts the
selection of literals in L in accordance with the following principle for an effective ∧I-minimal
proof search:

Principle of L-Extension (PEL). All literals from L′ must be maintained when extending
L′ to L′′. Through all modifications and extensions, literals from L, once they are members
of L, are modified only by increasing the index depths of their variables.

17This term is defined as follows:

Definition 5.29. A set S is minimally sufficient to satisfy a certain condition C iff no proper subset of S
is sufficient to satisfy C.



26 LAMPERT

This principle ensures that any selection of a literal in the course of the proof search
must be necessary for the ∧I-minimal proof. It follows that along a given proof path, the
size of L and the number of selected conjuncts can only increase.

The FOL-Decider generates the initial L and any extensions L′′ in accordance with the
principles FP, ⊥P, MLP, and PEL.

Similar to the principles PE℘ and PEL, the substitutions in sub′ must also be maintained
in sub′′. An exception can be found in certain substitutions of x variables µ with y0. Let
µ be an x variable that must be replaced with y0 according to sub′ in order to satisfy the
Prenex Condition P℘ with respect to ℘. Let L′ be extended such that µ must additionally be
replaced with a y variable ν that is to the left of µ according to ℘′. In this case, ν can take
over the role of y0, meaning that µ no longer needs to be replaced with y0. This is exception
2 of the maintenance principle for the specification of substitutions sub. The FOL-Decider
considers this exception and computes its consequences for the substitutions of x variables
in xx positions. Like exception 1 (cf. p. 22), exception 2 minimizes the length of the partial
list in σ, and therefore the need to multiply x variables, without excluding any ∧I-minimal
proofs.

Another, final, exception corresponds to substitutions at xx positions in pairs of literals
in L′. If x variables in these positions must be replaced with further y variables due to the
extension of L′ to L′′, then additional alternative specifications sub′′ must be generated that
consider alternative substitutions of x variables in xx positions in pairs of literals from L′

(exception 3 ). Thus, not all replacements of x variables with y variables in xx positions are
maintained in these additional specifications sub′′. All alternative substitution possibilities
are considered on alternative proof paths to ensure that a ∧I-minimal proof path is found
if one exists.

Principle of sub-Extension (PEsub). Apart from exception 1 as described on p. 22 and
exceptions 2 and 3 as introduced above, all substitutions must be maintained subsequent to
∧I applications: through all modifications and extensions, variables from sub are modified
only by increasing their index depths, apart from the mentioned exceptions.

The mentioned exceptions are justified by the intent to find a ∧I-minimal proof, if it
exists, without generating superfluous proof paths.

I summarize the maintenance principles for extending L′, ℘, and sub/sub′ into the
following single principle:

Principle of Extension (PE). L, L′, ℘, sub and sub′ must be modified and extended in
accordance with PEL, PE℘ and PEsub.

Alternative minimal sets of pairs of literals, alternative specifications of substitutions
and alternative optimized prenexes are considered on alternative proof paths. The FOL-
Decider considers only extensions of L, sub, and ℘ that are in accordance with PE. Any
selection of pairs of literals and any specification of substitutions with respect to some
optimized prenex is, roughly speaking, a fixed constituent in the search for a ∧I-minimal
proof along a proof path. On the one hand, this limits the search for proofs in the NNF-
calculus to an effective search for ∧I-minimal proofs. On the other hand, all combinatorial
possibilities consisting of different alternatives for L, ℘ and sub are generated to ensure that
a ∧I-minimal proof of contradiction for Di is found if Di is refutable.

Remark 5.30. It is not necessary to reduce the search for a ∧I-minimal proof to a search
along proof paths on which MLP and PE are applied. For a decision procedure based on



DECISION PROCEDURE FOR FOL 27

the ∧I-minimal proof strategy, it is sufficient to rely on a finite search space that contains
the proof paths that are generated in accordance with MLP and PE. In this sense, these
principles are not necessary but rather are principles for an effective ∧I-minimal proof
search (cf. section 8).

The principles mentioned thus far may already constitute a sat-proof for a Di. The
following is a simplest possible example of such a proof.

Example 5.31. Let Di be given as follows:

∃y1Fy1 ∧ ∃y2Gy2 ∧ ∀x1(¬Fx1 ∨ ¬Gx1) (5.50)

There are only one optimized prenex ℘ and only one sub/L:

℘ : {y1, y2, x1} (5.51)

sub/L : {{{{{x1, y1}}, {}, {}}, {Fy1,¬Fx1}}, (5.52)

{{{{x1, y2}}, {}, {}}, {Gy2,¬Gx1}}}
From the substitution specification sub given in (5.52), the following substitution list σ is
obtained:

σ : {{x1, y1, y2}} (5.53)

Thus, ∀x1(¬Fx1 ∨ ¬Gx1) in (5.50) must be multiplied to make it possible to replace x11
with y1 and x12 with y2:

∃y1Fy1 ∧ ∃y2Gy2 ∧ ∀x11(¬Fx11 ∨ ¬Gx11) ∧ ∀x12(¬Fx12 ∨ ¬Gx12) (5.54)

This results in the following modification of (5.52):

sub′/L′ : {{{{{x11 , y1}}, {}, {}}, {Fy1,¬Fx11}}, (5.55)

{{{{x12 , y2}}, {}, {}}, {Gy2,¬Gx12}}}
According to PEL, all pairs of literals from (5.55) must be maintained when extending

(5.55). To satisfy ⊥P, (5.55) must be extended by either {Gy2,¬Gx11} or {Fy1,¬Fx12}.
However, both extensions violate MLP. If one were to select {Gy2,¬Gx11} in addition to
{Fy1,¬Fx11}, then {Gy2,¬Gx12} would be superfluous. Consequently, the ∧I application
for multiplying x1 would be superfluous. This would violate the Fundamental Principle FP,
because ∀x12(¬Fx12 ∨¬Gx12) would no longer be selected. A similar situation would result
if one were to select {Fy1,¬Fx12} in addition to {Gy2,¬Gx12}. Thus, the proof along
the described proof path terminates because every extension violates some principle of the
∧I-minimal proof strategy. Therefore, (5.50) is proven to be satisfiable (not refutable) since
there are no alternatives to (5.51) and (5.52). No ∧I-minimal proof path can be found. If
(5.50) were refutable, however, a ∧I-minimal proof would exist, according to Theorem 5.2.

6. Termination: Loop List

∧I multiplies an x variable µ. The multiplication of an x variable µ may necessitate addi-
tional multiplications of other x variables ν. A loop list codes sequences of such causally
related multiplications of x variables.

To identify which multiplications of x variables ν are necessitated by the multiplication
of an x variable µ, one must compare the list of substitutions prior to the last ∧I multiplica-
tion (σ1) with the substitution list after that ∧I application (σ2) on each proof path. After



28 LAMPERT

each application of ∧I, the FOL-Decider generates new lists of the parameters sub/L and
ρ. Alternatives of sub, L or ρ generate alternative proof paths. Alternative modifications
may cause alternative substitution lists σ2. For each proof path, the modification of the
loop list on this path depends on the comparison between the list of substitutions prior to
the last ∧I multiplication (σ1) with the substitution list on the actual path after that ∧I
application (σ2). Since only variables that must be replaced with more than one y variable
are considered, all partial lists of length 2 are deleted from σ1 and σ2. σ1 can be generated
from the sub prior to the ∧I application18, and σ2 can be generated from the sub′′ subse-
quent to the ∧I application. Furthermore, it must be considered that L′′ and sub′′ contain
the descendants of variables v bound by quantifiers from the multiplied expression ∀µA(µ).
Let varsd be the set of all descendants, and let varsa be the set of all of their ancestors.

Definition 6.1. The multiplication of an x variable µ (= xvarc) necessitates the multipli-
cation of an x variable ν (= xvare) iff one of the following conditions is satisfied:

(1) ν is not a member of varsd, and
(a) according to σ2, ν is to be replaced with a y variable yvar that is not from

varsd, and according to σ1, ν is not to be replaced with yvar; or
(b) according to σ2, ν is to be replaced with a y variable yvar from varsd, and

according to σ1, ν is not to be replaced with the ancestor of yvar; or
(c) according to σ2, ν is to be replaced with two or more y variables from varsd

that are descendants of one and the same y variable from varsa.
(2) ν is a member of varsd, and

(a) ν is a descendant of µ (= xvarc) and occurs in σ2; or
(b) according to σ2, ν is to be replaced with a y variable yvar that is not from

varsd, and according to σ1, ν’s ancestor is not to be replaced with yvar; or
(c) according to σ2, ν is to be replaced with a y variable yvar from varsd, and

according to σ1, ν’s ancestor is not to be replaced with the ancestor of yvar;
or

(d) according to σ2, ν must be replaced with two or more y variables from varsd
that are descendants of one and the same y variable from varsa.

(3) If the multiplication of an x variable µ necessitates the multiplication of an x variable
ρ and the multiplication of ρ necessitates the multiplication of ν, then µ necessitates
the multiplication of ν (transitivity).

In (2)(a), the multiplication of xvarc necessitates the multiplication of a descendant of
the multiplied variable (cf. x1 in Example 5.50 and x3 in Example 6.19). In all other cases,
the multiplication of xvarc necessitates that some other variable that is not a descendant
of xvarc be replaced with a further y variable subsequent to the ∧I application.

Definition 6.2. A loop list is a list of partial lists, each of which consists of a head and a
body.

Definition 6.3. The head is a list that consists of

(1) a first list consisting of

18In fact, the FOL-Decider generates σ1 from the first list of the heads of partial lists of the loop list
prior to the ∧I application.



DECISION PROCEDURE FOR FOL 29

(a) an x variable µ that must be replaced with more than one y variable according
to σ19 and

(b) the y variables yvars that must replace µ according to σ and
(2) a second list sub/L containing those pairs of literals from L that contain literals in

the scope of ∀µ in D∗i plus the substitution specification sub that specifies how the
x variables of those pairs of literals are to be replaced with y variables.

Definition 6.4. The xvar-head is the head of the partial list with the x variable xvar in
the first position in the first list of the head. The xvar partial list is the partial list with
the x variable xvar in the first position in the first list of the head.

Definition 6.5. xvarc is an x variable µ whose multiplication necessitates the multiplica-
tion of the x variable ν (= xvare) on a proof path.

Definition 6.6. The body of an xvare partial list consists of all xvarc-heads that necessitate
the multiplication of xvare. In stage 1 on a proof path for Di, the body is empty.

Subsequent to the application of ∧I and the generation of L′′, ℘ and sub′′, the loop list
is modified. To define the modification algorithm, different types of x variables must be
distinguished (cf. Definitions 6.7 - 6.9).

Definition 6.7. A variable mxvar satisfies all of the following conditions:

(1) mxvar is required to be multiplied prior to the ∧I application and therefore consti-
tutes an xvar-head in the loop list prior to the ∧I application.

(2) mxvar no longer needs to be multiplied subsequent to the ∧I application according
to σ2.

(3) If mxvar is not identical to the multiplied x variable µ and mxvar is a member of
varsa, then no descendant of mxvar is required to be multiplied subsequent to the
∧I application according to σ2.

Definition 6.8. A variable newmxvar is an xvare that must be multiplied due to the
multiplication of µ (= xvarc) in the last ∧I application (cf. Definition 6.1).

Definition 6.9. A variable mxvar satisfies all of the following conditions:

(1) mxvar is required to be multiplied prior to the ∧I application and therefore consti-
tutes an xvar-head in the loop list prior to the ∧I application.

(2) Either
(a) mxvar is not a member of varsa and not a newmxvar but still is required to be

multiplied subsequent to the ∧I application according to σ2, or
(b) mxvar is a member of varsa and there are k (k > 0) descendants of mxvar, each

of which is not a newmxvar but still is required to be multiplied subsequent to
the ∧I application according to σ2.

Remark 6.10. It follows from Definition 6.7 and the ∧I application that the multiplied x
variable µ is a mxvar. Its descendent might be a newmxvar but cannot be an mxvar.

The heads of the partial lists of the loop list are modified subsequent to the ∧I appli-
cation as dictated by the following algorithm.

Algorithm 6.11. Apply the following rules with regard to the different types of x variables:

19Prior to a ∧I application, σ = σ1; subsequent to the ∧I application and the modification of the loop
list, σ = σ2.



30 LAMPERT

Rule 1: Delete all mxvar partial lists.
Rule 2: Replace the mxvar partial lists as follows:

(1) If mxvar is a member of varsa, then replace the mxvar partial list with k partial
lists. For each of the k (k > 0) descendants of mxvar as identified in Definition
6.9 (2)(b), modify the mxvar-head as follows:

(a) Replace mxvar in the first list with the descendant of mxvar.
(b) Replace the y variables yvars in the first list with the y variables yvars′

taken from σ2.
(c) Replace the second list sub/L with regard to sub′′/L′′.

(2) If mxvar is not a member of xvarsa, then modify the mxvar-head of the mxvar

partial list only in accordance with Rule 2 (1)(b) and (c).
Rule 3: Add newmxvar partial lists to the loop list:

(1) Take the µ partial list (= µ− PL20) from the original loop list. Add the head
of µ− PL to the body Bµold of µ− PL. The result is the body Bµ.

(2) If
(a) newmxvar is not a member of varsd and there is no newmxvar partial list

in the loop list or
(b) newmxvar is a member of varsd and either

(i) there is no partial list for the ancestor of newmxvar in the loop list
or

(ii) newmxvar is a descendant of the multiplied x variable µ,
then add a newmxvar partial list newmxvar − PL to the loop list. The head of
newmxvar− PL is a list with the following elements:

(a) a first list with newmxvar as the first element and a list of the y variables
yvars with which newmxvar must be replaced according to σ2 as the
second element;

(b) a second list sub/L generated from sub′′ and L′′ with regard to the literals
in the scope of the corresponding universally quantified expression in D∗i .

The body of newmxvar− PL is Bµ.
(3) If

(a) newmxvar is not a member of varsd and there is a newmxvar partial list
newmxvar− PLold in the loop list or

(b) newmxvar is a member of varsd and there is a partial list newmxvar−PLold
for the ancestor of newmxvar in the loop list,

then replace newmxvar − PLold with a partial list newmxvar − PL. The head
of newmxvar− PL is modified in accordance with Rule 3 (2), and the body of
newmxvar− PL is the concatenation of the body of newmxvar− PLold with Bµ.

The body of a partial list codes the sequence of ∧I multiplications that necessitate the
multiplication of the x variable in the head of that partial list.

Remark 6.12. Rule 1 of Algorithm 6.11 implies that µ − PL is deleted. According to
Rule 3 (2), partial lists µi − PL for descendants of µ are added if µi is a newmxvar.

Remark 6.13. Prior to any ∧I applications, the heads contain all x variables that must
be multiplied due to the initial sub of the initial L, and the bodies of the partial lists in the
loop list are empty. During the course of ∧I applications, the lengths of the bodies will never

20I.e., the partial list of the multiplied x variable µ (= xvarc).



DECISION PROCEDURE FOR FOL 31

decrease due to Algorithm 6.11. Instead, if a newmxvar exists, then the length of the body
Bµ will increase compared with Bµold, and the length of the loop list may also increase. On
the other hand, if there is no newmxvar, then the length of the loop list will decrease by at
least 1 according to Algorithm 6.11. Since either there is a newmxvar or there is not, either
the length of the loop list will decrease or the lengths of the bodies of the newmxvar − PLs
in the loop list will increase over consecutive ∧I applications along a proof path. Therefore,
as long as newmxvars result from ∧I applications, the body lengths will increase.

The loop list makes it possible to specify definite termination conditions for the proof
search in step 2 of the FOL-Decider.

Termination Criterion T1 (False Criterion). If the loop list = {}, then Di is refutable.

T1 is the only criterion for refutation that is applied in step 2 of the FOL-Decider. If the
loop list is empty, then it is no longer necessary to multiply any x variable. Therefore, an
unambiguous substitution list σ, an optimal prenex ℘ and a minimal set L of unifiable pairs
of literals have been found. Thus, all literals of D∗i that are not contained in L can be deleted,
and the resulting purged∗ anti-prenex normal form can be converted into a prenex normal
form D∗∗i with the optimal prenex ℘. Applying ∀E such that x variables are replaced with
y variables in accordance with σ results in an explicit contradiction D∗∗∗i . Consequently,
the search for a proof of contradiction for Di terminates with the result False.

During the course of ∧I applications, a head can become part of the body of a partial
list. The heads in the body of a partial list were once the heads of partial lists from previous
loop lists on the proof path. To define the Loop Criterion for terminating proof paths that
do not result in a proof, let us define the concept of “isomorphic heads”. Isomorphic heads
can be mapped onto each other in a one-to-one manner.

Definition 6.14. Two heads are isomorphic iff they are identical apart from variable indices
at levels > 1 and all variables that are identical up to level 1 can be mapped onto each
other in a one-to-one manner such that the heads are mapped onto each other.

In a similar manner, I will also speak of isomorphic universally quantified expressions
and isomorphic ∧I applications.

Whether two heads are isomorphic is decidable by (i) deciding whether the heads are
identical up to level 1 according to a canonical order and, if so, (ii) replacing variables with
indices at levels > 1 with variables with indices up to level 2 in a canonical way (such
that different variables are replaced with different variables with indices of depth ≤ 2) and
deciding whether the resulting heads are identical according to a canonical ordering. The
FOL-Decider specifies an algorithm for this task. Since the details are trivial, it is sufficient
to note that deciding on isomorphism reduces the maximum index level to 2.

Termination Criterion T2 (Loop Criterion). If the loop list contains a partial list PL
with a body that contains a head that is isomorphic to the head of PL, then the proof search
terminates on the corresponding proof path.

Remark 6.15. As Example 5.31 illustrates, T2 is not necessary for the termination of proof
paths. sat-proofs of Di may not even require the application of T2. T2 is merely sufficient
to terminate the search for a proof in the case that Di is not refutable. In the absence of T2,
the principles of the ∧I-minimal search strategy are not sufficient to ensure the termination
of the proof search in the case of an arbitrary, non-refutable Di.



32 LAMPERT

The Loop Criterion concerns the case in which the multiplication of an x variable
necessitates an isomorphic ∧I application, namely, one in which an isomorphic x variable
must be replaced with isomorphic y variables (including y0 with regard to ℘) in pairs of
isomorphic literals that are to be similarly unified. This criterion represents the following
situation: a ∧I application is necessary to multiply a universally quantified expression
∀µA(µ) in order to replace the resulting descendants of µ with different y variables in
different conjuncts, and this ∧I application then necessitates an isomorphic application of
∧I to an isomorphic universally quantified expression to unify similar pairs of literals in a
similar manner.

I define the correctness of the Loop Criterion T2 by means of the following assumption.

Assumption 6.16. The Loop Criterion T2 causes the termination only of proof paths that
are not proof paths for ∧I-minimal proofs.

This assumption, however, cannot be proven. We show this by considering the following
reasoning. The bold phrase highlights where the purported proof goes wrong.

Purported Proof. Every proof step on the proof path for a ∧I-minimal proof is necessary
(cf. Definition 5.1). A proof step of a ∧I-minimal proof consists of one ∧I application
that is performed to multiply an x variable. The necessity of such a multiplication is
computed with regard to sub, which specifies how to unify the pairs of literals in L with
regard to ℘ (including the introduction of y0 variables into sub). ∧I applications might
necessitate further ∧I applications due to the resulting modifications and extensions of L,
℘ and, consequently, sub. The isomorphic multiplication of an isomorphic x variable for
the sake of isomorphic substitutions of isomorphic pairs of literals results in an isomorphic
∧I application. Two isomorphic ∧I applications cannot both be a necessary part of a ∧I-
minimal proof because the conditions for their application are the same in both cases. Thus,
the proof search either enters loop or proceeds with some alternative ∧I applications that
will avoid the loop in later proof steps. In the first case, the ∧I applications will never
terminate in a proof; in the second case, the sequence of ∧I applications necessitating the
isomorphic ∧I application can be omitted if a proof is found. In either case, the sequence
of ∧I applications necessitating the isomorphic ∧I application is not part of a ∧I-minimal
proof. Therefore, if a ∧I-minimal proof for Di exists, it cannot depend on a sequence of
∧I applications that satisfies the Loop Criterion. A ∧I-minimal proof can only be found on
an alternative proof path. Thus, the search for a ∧I-minimal proof on a proof path that
satisfies the Loop Criterion can be terminated.

The highlighted phrase is incorrect. As [Lampert/Nakano (2022)] show by example it
may well be that a proof search enters a loop and repeats isomorphic proof steps without
looping forever. Instead, a proof may still be found. Isomorphy, contrary to strict identity
(as it is required for the stricter regularity criterion, which is correct), does not suffice for
a correct Loop Criterion.

Note that the Prenex Condition P℘ is considered by introducing y0 into sub. Therefore,
isomorphic ∧I applications also imply the similarity of ℘ with regard to the conditions for
these isomorphic ∧I applications.

Isomorphic ∧I applications also imply similarity with regard to the number of different
variables that are derivates of the same variable and, consequently, are taken from different
conjuncts. The structural conditions for these isomorphic ∧I applications are the same, and
thus, one can conclude that causally related ∧I applications cannot be part of a ∧I-minimal
proof.



DECISION PROCEDURE FOR FOL 33

T1 and T2 are the essential termination criteria.
Before we prove that these criteria suffice for terminating the ∧I proof strategy, we

need to consider the generation of multiplied expressions headed by universal quantifiers
∀µ1 and ∀µ2 that both originate from multiplying ∀µ but with non-isomorphic scopes.
Suppose, for example, that an expression ∀µA(µ) is multiplied first such that the result is
∀µ1A(µ1) ∧ ∀µ2A(µ2). Then, an expression ∀νB(ν) within the scope of ∀µ1 is multiplied
(modifying A(µ1) into A′(µ1)), which causes ∀µ2A(µ2) to need to be multiplied. In this
situation, ∀µ2A(µ2) is no longer isomorphic to ∀µ1A′(µ1) because the scope A′(µ1) contains
one more multiplied expression than A(µ2) does. Therefore, any multiplication of ∀µ2 that
necessitates a further multiplication of ∀µ1 cannot necessitate an isomorphic ∧I application
of ∀µ1 because the numbers of literals in A(µ2) and A′(µ1) are no longer identical. However,
the following lemma holds:

Lemma 6.17. The process of successively multiplying expressions necessarily produces iso-
morphic multiplied expressions ∀ρ1A(ρ1) and ∀ρ2A(ρ2), where the scopes A(ρ1) and A(ρ2)
each contain the same number of literals.

Proof. Non-isomorphic multiplied expressions ∀µ1A′(µ1) and ∀µ2A(µ2) can occur only as
a consequence of prior multiplications of quantifiers ∀ν within at least one of the scopes
A(µ1) and A(µ2). However, the isomorphism of (i) multiplied universally quantified ex-
pressions of inner universally quantified expressions separated by existential quantifiers or
conjunctions from ∀ν and (ii) outer universal quantifiers separated by existential quantifiers
or conjunctions from ∀µ1 and ∀µ2 is not affected. Due to the finite length of Di and the
finite number of nested quantifiers within Di, any sequence of successive multiplications of
universally quantified expressions must, at some point, repeat the multiplication of such
inner or outer universally quantified expressions. Therefore, any non-isomorphic sequence
of successive multiplications of universally quantified expressions necessarily produces the
repeated multiplication of isomorphic expressions with the same number of literals.

Theorem 6.18. T1 and T2 are sufficient to ensure that the search for a ∧I-minimal proof
of Di in step 2 of the FOL-Decider terminates.

Proof. In step 2 of the FOL-Decider, a search tree is generated in which each ∧I application
corresponds to a branching point. Subsequent to a ∧I application, only a finite number of
branches (= alternative proof paths) can be generated. This is so because the alternative
proof paths depend only on differences in L, ℘, and sub, which, in turn, all depend on the
finite length of D∗i and are therefore finite. Due to the Fundamental Principle FP, every
conjunct is maintained once selected, and thus, the number of selected conjuncts increases
with each ∧I application. Therefore, new branches at the end of the search tree differ from
previous branching points on the same proof path by their increased number of selected
conjuncts, and the search tree terminates if it terminates in depth.

That the search tree terminates in depth is ensured by the criteria T1 and T2, which are
related to the loop list. Any loop list is finite because only a finite number of x variables
can be replaced with only a finite number of y variables in only a finite number of pairs of
literals due to the finite length of D∗i . If the initial loop list prior to any ∧I application is
empty, then the search for a proof terminates due to T1 in stage 1. If the multiplication of
an x variable µ does not necessitate any further multiplication of an x variable, then the
length of the loop list decreases by at least 1 because at least the µ partial list is deleted
(cf. Remark 6.12).



34 LAMPERT

As explained in Remark 6.13, subsequent to a ∧I application, either the length of the
loop list decreases by 1 or an increase in body length occurs. Thus, as long as the loop list is
not empty, and T1 therefore does not apply, the lengths of the bodies (= numbers of heads
in the bodies) in the loop list increase over consecutive ∧I applications. Consequently, the
condition of the Loop Criterion must be satisfied after a finite number of steps given Lemma
6.17. This is so because the number of non-isomorphic heads with the same types and
numbers of literals from isomorphic scopes is finite due to the fact that the identification of
isomorphic heads reduces the index depth to ≤ 2. Therefore, since the process of successive
multiplication of universally quantified expressions necessarily results in the multiplication
of isomorphic expressions (Lemma 6.17), the substitutions of pairs of literals containing
the literals from the scope of the multiplied universal quantifier will, at some stage, be
isomorphic. At this point, the ∧I application will be identified by the Loop Criterion as a
superfluous repetition in the proof search.

The Loop Criterion must be satisfied after a finite number of steps even in the case
that the y variables yvars contain several derivates of the same y variable. This is true
because the number of possible substitutions of an x variable µ is bounded by its occurrences
in positions in different literals in the (finite) scope A(µ) in ∀µA(µ). Isomorphic heads
contain identical numbers of these positions; thus, there is only a finite number of possible
isomorphic heads due to the finite length of isomorphic multiplications of ∀µA(µ).

Therefore, some head in the body of some partial list will become isomorphic to the
head of that partial list during the course of ∧I applications unless the loop list is emptied.

Example 6.19. The following formula (6.1) is a simple example of a formula that has
only infinite models. However, there is no need to refer to model theory to prove its
non-refutability (satisfiability). It can be proven to be non-refutable on the basis of the
∧I-minimal proof strategy and the Loop Criterion.

Let Di be given as follows:

∀x1∃y1(Fx1y1 ∧ ∀x3(Fx3y1 ∨ ¬Fx3x1)) ∧ ∀x2¬Fx2x2 (6.1)

(6.1) is equivalent to a formula presented by [Boerger et al.(2001)], p. 33, as an example
of a formula that has only infinite models. It is not decided in step 1 of the FOL-Decider.
Step 2 starts with the generation of L, ℘, and sub prior to any ∧I application. There is only
one initial minimal set of pairs of literals:21

L : {{Fx1y1,¬Fx3x1}, {Fx3y1,¬Fx2x2}} (6.2)

There is also only one optimized prenex (y0 precedes any prenex by definition):

℘ : {y0, x1, y1, x2, x3} (6.3)

In addition, there is only one sub that specifies how to unify (6.2) in relation to (6.3).
x2 and x3 must both be replaced with y1 in the second pair of literals {Fx3y1, ¬Fx2x2}. x1
must be replaced with y1 in the second position in ¬Fx3x1 to unify the first pair of literals
{Fx1y1, ¬Fx3x1}. x1 and x3 must both be replaced with the same y variable in the first
positions in the literals. Thus, σ is unambiguous as long as P℘, and consequently (6.3), is
not considered. However, condition P℘ on p. 19 is satisfied only if x1 is replaced with y0 in

21Fx1y1 and ¬Fx2x2 do not constitute a unifiable pair of literals since ∀x1∃y1Fx1y1 ∧∀x2¬Fx2x2 is not
refutable.



DECISION PROCEDURE FOR FOL 35

addition to y1 since y1 is to the right of x1 in (6.3). Thus, x1 must be multiplied to replace
x12 with y11 subsequent to the ∧I application. In addition to the mentioned occurrence of
x1 in the second position in ¬Fx3x1, x1 occurs only in the first position in Fx1y1 in the
first pair of literals {Fx1y1, ¬Fx3x1} in (6.2). At this position, x1 must be replaced with
y0 because a pair of literals in which both literals contain an x variable xvar is unifiable
only if in at least one of the two literals, xvar must be replaced with a y variable that is to
the left of xvar in ℘.22 As a consequence of replacing x1 in the first position in Fx1y1 with
y0, x3 must also be replaced with y0 in the first position in ¬Fx3x1. Thus, the following
sub/L is obtained:

{{{{{x1, y1}}, {{x1, x3, y0}}, {}}, {Fx1y1,¬Fx3x1}}, (6.4)

{{{{x2, y1}, {x3, y1}}, {}, {}}, {Fx3y1,¬Fx2x2}}} (6.5)

This results in the following substitution list σ:

{{x1, y0, y1}, {x2, y1}, {x3, y0, y1}} (6.6)

Since x1 as well as x3 must be replaced with y0 and y1, the initial loop list contains two
partial lists, (6.7) and (6.8). Since this loop list is the initial one, the bodies of the partial
lists are empty. I highlight the first lists in boldface:

{{{{x1,y0,y1}, {{{{{x1, y1}}, {{x1, x3, y0}}, {}}, {Fx1y1,¬Fx3x1}},
{{{{x2, y1}, {x3, y1}}, {}, {}}, {Fx3y1,¬Fx2, x2}}}}, {}}, (6.7)

{{{x3,y0,y1}, {{{{{x1, y1}}, {{x1, x3, y0}}, {}}, {Fx1y1,¬Fx3, x1}},
{{{{x2, y1}, {x3, y1}}, {}, {}}, {Fx3, y1,¬Fx2, x2}}}}, {}}} (6.8)

Since x1 as well as x3 must be replaced with more than one y variable, ∧I must be
applied to multiply x1 and x3. Both are necessary to unify all pairs of literals from (6.2). One
could consider the multiplication of different universally quantified expressions in different
orders on different proof paths. However, this would be ineffective. Because the x variables
from lists of lengths > 2 in σ must be multiplied anyway, one of the x variables to be
multiplied can be selected arbitrarily. If a ∧I-minimal proof exists, it will be found with
any order of multiplication of the universally quantified expressions. Thus, the following
principle can be established:

Principle of Commutativity (PC). If several x variables must be multiplied, any of them
can be multiplied first.

However, this does not mean that the number of ∧I applications on a proof path and
the number of alternative proof paths do not depend on the order in which universally quan-
tified expressions are multiplied. Not the correctness but the efficiency of the ∧I-minimal
proof strategy depends on which universally quantified expression is selected to be multi-
plied first. Therefore, the proof search depends on the implemented strategy for ordering
the necessary ∧I applications. In most cases, the FOL-Decider multiplies the outermost
universally quantified expressions before the innermost ones because inner expressions are

22This condition is similar to C3U1 from [Lampert (2019)], p. 28, and is implemented in step 2 of the
FOL-Decider.



36 LAMPERT

also multiplied in the process of multiplying outer ones. However, the multiplication of exis-
tentially quantified expressions increases the complexity of the proof search. For this reason,
universally quantified expressions that do not contain existentially quantified expressions
are multiplied first. Consequently, ∀x3(Fx3y1 ∨ ¬Fx3x1) is multiplied first in (6.1). This
results in the following D∗i :

∀x1∃y1(Fx1y1 ∧ ∀x31(Fx31y1 ∨ ¬Fx31x1) ∧
∀x32(Fx32y1 ∨ ¬Fx32x1)) ∧ ∀x2¬Fx2x2 (6.9)

The resulting sub′/L′ is as follows:

{{{{{x1, y1}}, {{x1, x31 , y0}}, {}}, {Fx1y1,¬Fx31x1}}, (6.10)

{{{{x2, y1}, {x32 , y1}}, {}, {}}, {Fx32y1,¬Fx2x2}}} (6.11)

Finally, the resulting extended optimized prenex ℘′ is

℘′ : {y0, x1, y1, x2, x31 , x32} (6.12)

Since the multiplied universally quantified expression contains ∨, L′ must be extended.
There is only one possible extension that satisfies ⊥P, MLP and PEL, namely, the addition of
the unifiable pair of literals {Fx31y1, ¬Fx32x1}. Since (6.10) and (6.11) must be maintained,
according to PE, there are exactly two alternatives for specifying the substitutions of this
pair of literals:

Alternative 1 : {{{{x1, y1}}, {{x31 , x32 , y1}}, {}}, {Fx31y1,¬Fx32x1}} (6.13)

Alternative 2 : {{{{x1, y1}}, {{x31 , x32 , y0}}, {}}, {Fx31y1,¬Fx32x1}} (6.14)

Alternative 1 is realized on proof path 1, and Alternative 2 is realized on an alternative
proof path 2. In Alternative 1, x31 must be replaced with y1 in addition to y0 in (6.10). In
Alternative 2, x32 must be replaced with y0 in addition to y1 in (6.11). If one counts not
merely the ∧I applications on a single proof path but the absolute number of ∧I applications,
then the multiplication of x31 is the second ∧I application, and the multiplication of x32 is
the third. In both cases, applying ∧I results in two further proof paths. In the following, I
consider Alternative 1 only on proof path 1; proof path 2 terminates similarly within the
same number of steps.

The modified loop list for Alternative 1 contains two partial lists, (6.15) and (6.16),
since x1 and x31 must be multiplied. I highlight the first lists in the head and in the body
of the partial lists in boldface:

{{{{x1,y0,y1}, {{{{{x1, y1}}, {{x1, x31 , y0}}, {}}, {Fx1y1,¬Fx31x1}},
{{{{x1, y1}}, {{x31 , x32 , y1}}, {}}, {Fx31y1,¬Fx32x1}}, (6.15)

{{{{x2, y1}, {x32 , y1}}, {}, {}}, {Fx32y1,¬Fx2, x2}}}}, {}},
{{{x31 ,y0,y1}, {{{{{x1, y1}}, {{x1, x31 , y0}}, {}}, {Fx1y1,¬Fx31x1}},

{{{{x1, y1}}, {{x31 , x32 , y1}}, {}}, {Fx31y1,¬Fx32x1}}}}, (6.16)

{{{x3,y0,y1}, {{{{{x1, y1}}, {{x1, x3, y0}}, {}}, {Fx1y1,¬Fx3x1}},
{{{{x2, y1}, {x3, y1}}, {}, {}}, {Fx3y1,¬Fx2x2}}}}}}}



DECISION PROCEDURE FOR FOL 37

The body of partial list (6.15) is still empty. In the case of partial list (6.16), the Loop
Criterion is not yet satisfied because the second pairs of literals in the head and the list in
the body are not isomorphic.

Although x1 is still to be replaced with y0 and y1, derivates of x3 are to be multi-
plied prior to (derivates of) x1, according to the Commutative Principle PC (cf. p. 35).
Multiplying x31 results in the following D∗i :

∀x1∃y1(Fx1y1∧
∀x311 (Fx311y1 ∨ ¬Fx311x1) ∧ ∀x312 (Fx312y1 ∨ ¬Fx31x1) ∧ (6.17)

∀x32(Fx32y1 ∨ ¬Fx32x1)) ∧ ∀x2¬Fx2x2
The resulting sub′/L′ is as follows:

{{{{{x1, y1}}, {{x1, x311 , y0}}, {}}, {Fx1y1,¬Fx311x1}}, (6.18)

{{{{x2, y1}, {x32 , y1}}, {}, {}}, {Fx32y1,¬Fx2x2}}}, (6.19)

{{{{x1, y1}}, {{x312 , x32 , y1}}, {}}, {Fx312y1,¬Fx32x1}}}} (6.20)

Finally, the resulting extended optimized prenex ℘′ is

℘′ : {y0, x1, y1, x2, x311 , x312 , x32} (6.21)

Again, L′ must be extended, and there is only one possible extension that satisfies ⊥P,
MLP and PEL, namely, the addition of the unifiable pair of literals {Fx311y1, ¬Fx312x1}. As
before, there are two and only two alternatives for specifying the substitutions of this pair
of literals:

Alternative 1’ : {{{{x1, y1}}, {{x311 , x312 , y1}}, {}}, {Fx311y1,¬Fx312x1}} (6.22)

Alternative 2’ : {{{{x1, y1}}, {{x311x312 , y0}}, {}}, {Fx311y1,¬Fx312x1}} (6.23)

In the case of Alternative 1’, x311 must again be replaced with y0 and y1 to unify the

pairs of literals in (6.18) and (6.22), which are isomorphic to (6.10) and (6.13). Therefore,
the loop list satisfies the Loop Criterion and terminates the proof path that extends (6.18)
- (6.20) by adding (6.22). Since the x1 partial list is irrelevant for the application of the
Loop Criterion, I quote only the x311 partial list:

{{{x311
,y0,y1}, {{{{{x1, y1}}, {{x1, x311 , y0}}, {}}, {Fx1y1,¬Fx311x1}},
{{{{x1, y1}}, {{x311 , x32 , y1}}, {}}, {Fx311y1,¬Fx32x1}}}},

{{{x3,y0,y1}, {{{{{x1, y1}}, {{x1, x3, y0}}, {}}, {{Fx1y1,¬Fx3x1}}, (6.24)

{{{{x2, y1}, {x3, y1}}, {}, {}}, {Fx3y1,¬Fx2x2}}}},
{{x31 ,y0,y1}, {{{{{x1, y1}}, {{x1, x31 , y0}}, {}}, {Fx1y1,¬Fx31x1}},

{{{{x1, y1}}, {{x31 , x32 , y1}}, {}}, {Fx31y1,¬Fx32x1}}}}}
The last list in the body is isomorphic to the head of (6.24).
The resulting sub/L on the proof path that consists of (6.18) - (6.20) and (6.23) (=

Alternative 2’ ) is not eliminated by the Loop Criterion T2. This is so because the pairs of



38 LAMPERT

Figure 2: Number of proof paths vs. number of proof steps in the sat-proof of (6.1)

literals in (6.20) and (6.23) that contain literals in the scope of ∀x312 are not isomorphic to

the pairs of literals in (6.10) and (6.13) that contain literals selected from the scope of ∀x31
in the previous sub/L resulting from the first ∧I application.

Regarding the sub/L resulting from Alternative 2’, x312 must be replaced with y0 and

y1. The multiplication of x312 (= the fourth ∧I application in the proof search) results in

two alternative sets of sub′′/L′′/℘′. The modification of the loop list in accordance with
these sub′′/L′′/℘ alternatives satisfies the conditions of the Loop Criterion in both cases. In
one case, x3121

must be replaced with y0 and y1; in the other, x3122
must be replaced with

y0 and y1; and in both cases, the pairs of literals and their substitutions are isomorphic to
those of (6.20) and (6.23) (Alternative 2’ ).

The multiplication of x32 (= the third ∧I application in the proof search) yields results
similar to those of the multiplication of x31 ; the multiplication of x321 (= the fifth ∧I

application in the proof search) subsequent to the multiplication of x32 yields results similar
to those of the multiplication of x312 . Thus, the proof search terminates after 5 steps due to

T2. Figure 2 depicts the relation between the number of proof steps or ∧I applications (x
axis) and the number of proof paths (y axis). The number of proof paths can be reduced by
only 1 in one proof step. In a typical sat-proof, the number of proof paths initially increases
rapidly and then, at a certain point, begins to slowly decrease. By contrast, False-proofs
terminate immediately at any step and any number of proof paths.

Remark 6.20. The Di given in (6.25) is equivalent to a formula from [Dreben (1979)], p.
120, which is another formula that has only infinite models:

∀x1∃y1(∀x4(¬Px1x4 ∨Qy1x4) ∧ ∀x5(¬Qx1x5 ∨Qy1x5)) ∧ ∀x2¬Qx2x2 ∧ ∀x3Px3x3 (6.25)

Like (6.1), (6.25) can be rather rapidly proven by the FOL-Decider to be non-refutable
(cf. figure 3).

(6.1) (= SYO637+1.p in the TPTP library) and (6.25) (= SYO635+1.p in the TPTP
library) are examples of formulas with only infinite models for which the FOL-Decider



DECISION PROCEDURE FOR FOL 39

Figure 3: Number of proof paths vs. number of proof steps in the sat-proof of (6.25)

reaches a decision, whereas these formulas are not decided by other logic engines, such as
Beagle, Darwin, i-Prover, E, Vampire and SPASS.

7. Output

If the FOL-Decider finds a ∧I-minimal proof for Di in step 2, then the output, in addition
to Di, is as follows:

(1) the rectified and purged∗ anti-prenex normal form D∗i ,
(2) the minimal set L of unifiable pairs of literals,
(3) the unambiguous substitution list σ that specifies how the x variables must be

replaced with y variables such that all pairs of literals from L are unified, and
(4) an optimal prenex ℘ that allows the substitutions in σ to be performed by applying
∀E.

Thus, a recipe for a proof of contradiction is provided. From D∗i , one can read off which
universally quantified expressions in Di must be multiplied and which conjuncts can be
deleted; ℘ identifies the prenex normal form D∗∗i that is to be generated from D∗i by applying
PN laws; σ determines how ∀E must be applied to derive an explicit contradiction D∗∗∗i
from D∗∗i ; and L specifies the pairs of literals that must be unified such that each disjunct
of the DNF matrix of D∗∗∗i contains an explicit contradiction. For an example, cf. Example
5.28, p. 24, with Di = (5.42), D∗i = (5.46), L = (5.47), σ = (5.48), and ℘ = (5.49).

The FOL-Decider ultimately returns False if all disjuncts Di of the FOLDNF resulting
from step 1 of the FOL-Decider are proven to be refutable. In this case, the user receives the
FOLDNF that is sat-equivalent to the input formula φ and all recipes for the ∧I-minimal
proofs for the disjuncts Di of the FOLDNF.

Once the proof search for a Di terminates without a ∧I-minimal proof having been
found, the FOL-Decider returns sat. In this case, Di and, therefore, the FOLDNF and
the input formula φ are proven to be non-refutable. The user can ask for details of the
sat-proofs, e.g., diagrams such as figures 2 and 3; the D∗i , sub/L, and ℘ for each proof step;
or the applications of the various principles of the ∧I-minimal proof strategy.



40 LAMPERT

8. Effective Proof Search

The search for ∧I-minimal proofs can be optimized from several perspectives. Three opti-
mization strategies are already implemented as optional tools. First, one can minimize the
FOLDNFs in step 1 of the FOL-Decider using the algorithm described in [Lampert (2017)].
Furthermore, the scopes of existential quantifiers can be further minimized in step 1 of
the FOL-Decider through ∃M optimization (cf. section 7 of [Lampert (2019)] and footnote
8). However, both of these tools sometimes speed up the evaluation but sometimes slow it
down. Finally, one can also apply an optional model-theoretic tool to search for a model
up to an upper bound independent of the proof-theoretic strategy of the FOL-Decider. In
addition, several optional tools can be applied to provide models in the case of a sat-proof.
However, the decision procedure based on the ∧I-minimal strategy is independent of model
theory. If one intends to understand this strategy, one should abstain from invoking model
theory.

Three further optimization strategies have not yet been implemented. First, the com-
binatorial generation of sub/L/℘ alternatives and the Loop Criterion may be restricted by
further criteria. Second, the FOL-Decider does not currently apply any principles that rely
on comparing alternative proof paths, apart from deleting duplicates. Third, one could
classify patterns of sub/L/℘ for the termination of proof paths. Furthermore, many im-
provements to both the concrete implementation and the proof search strategy are possible.
However, the FOL-Decider is not designed to implement a fast and effective proof search.
In this respect, other logic engines are preferable. Instead, the intent in developing the
FOL-Decider was to implement the ∧I-minimal proof strategy to demonstrate its feasibil-
ity.

If one is looking for a transparent and elegant proof search that implements the logical
ideas underlying the ∧I-minimal strategy, then principles and criteria that allow one to
terminate proof paths as soon as possible are indispensable. Any optimization, however, is
prone to error. For this reason, I refer to a “maximal search tree” instead of an “effective
search tree” in the following.

Definition 8.1. A maximal search tree generates all combinatorially possible non-duplicate
alternatives of the following:

(1) D∗i resulting from different selections of the order in which to multiply universally
quantified expressions,

(2) minimal and non-minimal sets L∗ of unifiable pairs of literals,
(3) optimized and not optimized (logically valid) prenexes ℘∗, and
(4) all alternative specifications sub∗ of substitutions of x variables in xx positions with

y variables for unification

such that the principles FP, ⊥P, and P℘ and the termination criteria T1 and T2 are satisfied.

Remark 8.2. I abstain here from providing an exact algorithmic definition of “all combi-
natorial alternatives of D∗i , L

∗, ℘∗, and sub∗ in the course of each ∧I application”. Likewise,
I abstain from specifying formulas for calculating the number of these alternatives. It is
sufficient to recognize that they are finite due to the finite numbers of literals, variables and
universal quantifiers in each step on each proof path. The algorithmic specification of FP,
⊥P, and P℘ for a ∧I-minimal proof search is also trivial. Thus, it should be accepted that
a maximal search tree for Di can be generated.



DECISION PROCEDURE FOR FOL 41

Remark 8.3. A maximal search tree contains all proof paths that satisfy the principles
MLP, PE, and PC, but it is not restricted to these proof paths. FP, P℘, and ⊥P are necessary
principles for a ∧I-minimal proof search, and T1 and T2 are necessary criteria for the
termination of a proof search. By contrast, MLP, PE, and PC are principles of an effective
search strategy for ∧I-minimal proofs.

Remark 8.4. The proof of Theorem 6.18 does not depend on the efficiency of a ∧I-minimal
proof search. As long as the loop list is not empty, the body lengths increase with every
∧I application that does not decrease the length of the loop list. Consequently, the head of
some partial list will become isomorphic to some head in the body of that partial list within
a finite number of steps because only a finite number of isomorphic heads can be generated
from Di.

Theorem 8.5. A maximal search tree for a Di is finite.

Proof. The proof of this theorem follows from Theorem 6.18 and Remark 8.4 and can be
summarized as follows:

(1) The combinatorial alternatives of D∗i , L∗, ℘∗ and sub∗ in the course of each ∧I
application are finite. Therefore, each branching point is finite.

(2) If the search for a proof along a proof path does not terminate due to an empty loop
list or the necessary principles for the termination of a ∧I-minimal proof search,
then the proof search will eventually lead to an isomorphic ∧I application due to
the finite length of Di. Therefore, T2 applies unless a proof path is terminated due
to the necessary principles T1 or FP, ⊥P and P℘.

9. Correctness

Proving the correctness of the FOL-Decider requires proving that the FOL-Decider returns
False iff the input formula φ is refutable. The proof in the direction from left to right is
easy.

Theorem 9.1. If the FOL-Decider returns False, then the input formula φ is refutable.

Proof. The result of step 1 of the FOL-Decider is an FOLDNF. According to Theorem 2.8,
the input formula φ is sat-equivalent to its FOLDNF. If the FOL-Decider returns False

as a result in step 1, then the simple False/sat check applied in step 1 and referred to in
the proof of Theorem 2.8 already identifies the FOLDNF and, therefore, the sat-equivalent
initial formula φ as refutable. Otherwise, the FOL-Decider returns False iff it returns
False for each disjunct Di from disjuncts D1 to Dn of the FOLDNF. Since φ is refutable
iff each disjunct Di is refutable, φ is refutable if each Di is indeed refutable in the case
that the FOL-Decider returns False for each Di as a result of step 2. If the FOL-Decider
returns False for Di as a result of step 2, it returns a recipe for a proof of contradiction
for Di within the NNF-calculus. This recipe determines the necessary applications of ∧I,
an optimal prenex that can be generated via PN laws and the applications of ∀E that are
needed to derive an explicit contradiction. From the correctness of the NNF-calculus (cf.
Theorem 3.3 in [Lampert (2019)]), it follows that each Di and, therefore, the FOLDNF and
φ are indeed refutable.



42 LAMPERT

For a complete and detailed proof in the direction from right to left, it would be nec-
essary to replace the definitions and principles serving as the basis of the ∧I-minimal proof
search strategy presented in this paper with their exact algorithmic implementations. In
particular, this concerns the computations of L, ℘, and sub and their modification and
extensions. However, I abstain from this here. It is, however, not necessary to describe
the algorithmic details because we have shown that the correctness of the Loop-Criterion
is based on the incorrect Assumption 6.16. We show this by showing that a proof FOL’s
decidability rests on this assumption. To prove the decidability of Di, it is sufficient to prove
that the finite maximal search tree for ∧I-minimal proofs in the NNF-calculus contains a
∧I-minimal proof if Di is refutable.

Definition 9.2. A maximal search tree contains a ∧I-minimal proof iff it generates a
combination of D∗i , L, ℘, and sub that constitutes a ∧I-minimal proof.

Lemma 9.3. A maximal search tree contains all ∧I-minimal proofs.

Proof. According to Definition 8.1, a maximal search tree generates all combinatorially
possible D∗i , L∗, ℘∗, and sub∗. By definition, this totality of combinations contains all
combinations of D∗i , L, ℘, and sub that constitute ∧I-minimal proofs (cf. Remark 8.3).

Referring to a maximal proof tree circumvents the necessity of proving the correctness
of the principles MLP, PE, and PC of an effective search strategy for ∧I-minimal proofs. The
decidability of FOL through the ∧I-minimal proof strategy in the NNF-calculus could be
proven on the basis of Lemma 9.3 and Assumption 6.16 without considering the details of
its implementation in the FOL-Decider.

Assumption 9.4. FOL is decidable.

Purported Proof. According to Theorem 2.8, φ is sat-equivalent to its FOLDNF. Thus,
φ is decidable if Di is decidable. That Di is decidable follows from Theorem 8.5 (finiteness
of the maximal search tree), Lemma 9.3 (completeness of a maximal search tree with re-
spect to ∧I-minimal proofs), Theorem 5.2 (completeness of ∧I-minimal proofs of Di in the
complete NNF-calculus), Theorem 9.1 (correctness of False outputs) and Assumption
6.16 (correctness of the Loop Criterion for the ultimate termination of proof paths).

Remark 9.5. Assumption 9.4 is incorrect because of the incorrectness of Assumption 6.16,
which is refuted by example in [Lampert/Nakano (2022)]. This shows where the concrete
attempt to decide FOL by a Loop Criterion fails. This refutation is independent of the
proof techniques used in the classical undecidability proofs.

Acknowledgements. I am grateful to Anderson Nakano for discussing my algorithm and
its proof and, in particular, going the way to refute it together. Furthermore, I am grateful to
Karsten Müller, Michael Taktikos, Pietro Fornara, Yvonne Lampert, Markus Säbel, Stefan
Steins, Geoff Suttcliffe and Victor Rodych.

References

[Boerger et al.(2001)] Börger, E., Grädel, E. & Gurevich, Y.: The Classical Decision Problem, Springer.
[Boolos et al. (2003)] Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, forth edition,

Cambridge: Cambridge University Press.



DECISION PROCEDURE FOR FOL 43

[Dreben (1979)] Dreben, B., Goldfarb, W.D.: The Decision Problem. Solvable Classes of Quantificational
Formulas, Addison-Wesley, London.

[Hilbert(1970)] Hilbert, D., Bernays, P.: Grundlagen der Mathematik, Band 1, Springer, Berlin.
[Lampert (2017)] Lampert, T. 2017: “Minimizing disjunctive normal forms of pure first-order logic”, The

logic Journal of the IGPL, 25 (3), 325-347.
[Lampert (2019)] Lampert, T. 2019: “A Decision Procedure for Herbrand Formelae without Skolemization”,

https://arxiv.org/abs/1709.00191, 1-30.
[Lampert/Nakano (2022)] Lampert, T., Nakano, A. 2022: “Explaining Undecidability of First-Order Logic”

http://www2.cms.hu-berlin.de/newlogic/webMathematica/Logic/undecidability phil publication.pdf
[Quine (1982)] Quine, W.V.O.: Methods of Logic, Fourth Edition, Harvard University Press, Harvard, MA.


