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Abstract

An essential feature of Wittgenstein’s early philosophy of logic is the
conjecture of a positive solution to the problem of whether logical truth
in first-order logic is decidable (Entscheidungsproblem). It is often ar-
gued that the proofs of a negative solution to the Entscheidungsproblem
presented in the 1930s refuted Wittgenstein’s early conception of logic.
However, Wittgenstein’s philosophy of logic does not share the principles
presumed by the proof strategies of those undecidability proofs. Therefore,
we provide a purely logical refutation of Wittgenstein’s early philosophy
of logic that does not make use of assumptions that Wittgenstein does not
share. Wittgenstein asserted that logical properties of first-order logic are
decidable on the basis of patterns in a suitable notation for first-order
logic. We explain why this conviction fails.

1 Introduction
An essential and provoking feature of Wittgenstein’s early philosophy of logic
(WPL) is his conviction that first-order logic (FOL) is decidable. Since it is
a common theorem of mathematical logic that FOL is undecidable1, WPL is
judged to be refuted (cf., e.g., Anscombe [1959], p. 137; Black [1964], p. 319;
Fogelin [1976], p. 75; Sundholm [1990], p. 60; editor’s comment in CL, p. 52;
Landini [2007], pp. 118–120; Potter [2009], pp. 181–183). This paper exam-
ines this judgement and argues that additional effort must be made to refute
Wittgenstein’s conviction because Wittgenstein does not accept presumptions
of a metalogical undecidability proof. We, thus, provide an undecidability proof
solely based on assumptions that do not go beyond automated proof search
and, thus, intend to explain to a Wittgensteinian why the view of WPL is not
applicable to the whole realm of FOL.

Since we are concerned with the Entscheidungsproblem, we abstain from dis-
cussing special features of Wittgenstein’s early logic. Specifically, we do not

1This theorem is called the “Church–Turing theorem” because Church [1936] and Turing
[1936/37] each proved it independently in 1936. In doing so, they used different, although
equivalent, notions of computability. Theorems IX and X of Gödel [1931] were already very
near to Church’s proof, but only Turing’s later analysis of computability seemed to convince
Gödel; cf. Kripke [2013].
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consider questions about the application of logic or of logical analysis of lan-
guage. More importantly, we do not consider the peculiarities of Wittgenstein’s
early logic; on this topic, cf. Rogers/Wehmeier [2012], Weiss [2017], and Lam-
pert/Säbel [2021]. In particular, these concern Wittgenstein’s N-operator, his
interpretation of identity and the exclusive interpretation of quantifiers. We do
not intend to contribute to exegetical controversies concerning Wittgenstein’s
early conception of logic. Instead, we take it for granted that Wittgenstein
thought traditional FOL to be decidable, independent of philosophical contro-
versies about its semantics and alternatives he might have envisaged. Since we
do not consider identity, we refer to FOL without identity. As is well known, the
Entscheidungsproblem for FOL with identity can be reduced to the Entschei-
dungsproblem for FOL without identity.

We first substantiate Wittgenstein’s conviction of a positive solution to the
Entscheidungsproblem (section 2) before we discuss the question of the extent
to which this conviction is refuted by the Church–Turing theorem (section 3).
The main part of our paper (section 4) then expounds a purely logical refutation
of WPL that is based on assumptions Wittgenstein shares. The last section,
section 5, concludes that WPL is besotted by a vision of a decision procedure
in terms of pattern detection that, however, is realizable only for fragments of
FOL.

2 The Entscheidungsproblem and WPL
Following Russell, Wittgenstein calls propositions that are true due to their
logical vocabulary “logical propositions”. They are equivalent to logical theorems
or logically valid formulas. TLP 6.113 mentions the key idea of Wittgenstein’s
philosophy of logic:

It is the peculiar [characteristic] mark of logical propositions that
one can recognize that they are true from the symbol alone, and this
fact contains in itself the whole philosophy of logic.

TLP 6.113 echoes Wittgenstein’s explanation of this idea in a letter to Russell
from 1913 (CL, letter 32):

It is the peculiar [characteristic] (and most important) mark of
non-logical propositions that one is not able to recognize their truth
from the propositional sign alone. If I say, for example, ‘Meier is
stupid’, you cannot tell by looking at this proposition whether it
is true or false. But the propositions of logic – and only they –
have the property that their truth or falsity, as the case may be,
finds its expression in the very sign for the proposition. I have not
yet succeeded in finding a notation for identity that satisfies this
condition; but I have NO doubt that it must [upper case added] be
possible to find such a notation.
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This quote makes clear that Wittgenstein did not assume that one could
somehow identify logical propositions by means of some ordinary notation for
FOL. Instead, to identify logical propositions, ordinary notation must be con-
verted into a suitable logical notation that alone provides syntactic criteria for
logically true propositions. Converting a formula into a suitable notation is a
finite, mechanical process. We abbreviate the idea of a decision procedure for
FOL formulas consisting of conversion into a suitable notation that provides syn-
tactic criteria for logical properties as DPW, where “DP” is short for “decision
procedure” and “W” for “Wittgenstein”.

Wittgenstein goes on to explain his ab-notation as a notation that provides
a general criterion for logical propositions in the case of propositional logic, and
he purports that “it is easy to see that it must [upper case added] also apply to
all others” (CL, letter 30), whereby he explicitly refers to logical propositions
of Principia Mathematica and, thus, to traditional FOL. In NL, p. 95ff., he
illustrates the application of his ab-notation for most simple first-order formulas.

We will not go into the details of Wittgenstein’s ab-notation. Lampert
[2017a] showed how this notation can be applied to the fragment of FOL without
dyadic connectives in the scope of quantifiers.2 Wittgenstein, however, was not
interested in specifying the details of a notation satisfying DPW. It sufficed for
him to envisage its realization for fragments of FOL by means of his ab-notation
and to stipulate that it or some alternative notation (cf. CL, letter 32, p. 52)
must be realizable for the whole realm of FOL. He was concerned with solving
the philosophical problem of distinguishing logical truth from other truths by
DPW. His reasoning is best understood as the postulation of a position that
he considered necessary to solve this problem. For him, a suitable notation for
deciding FOL was a normative postulate that alone could solve the problem of
how to explain logical truth (TLP 6.1222(2), 6.1223):

Not only must [upper case added] a proposition of logic be ir-
refutable by any possible experience, it must [upper case added] also
be unconfirmable by any possible experience.

Now it becomes clear why people have often felt as if it were
for us to ‘postulate’ the ‘truths of logic’. The reason is that we can
postulate them in so far as we can postulate an adequate notation.

WPL stands in contrast to the distinction between syntax and semantics that
is taken as standard in modern mathematical logic. According to mathemati-
cal logic, semantics assigns extensions to the nonlogical vocabulary, and logical
truth is defined as truth in all interpretations (logical validity). Any FOL cal-
culus must meet this standard for being correct and complete. Thus, syntactic
transformations of signs are not seen as something that is able to define logical
truth; they are merely something that must be adjusted to a prior semantic
definition. Since extensions come first in this view, FOL becomes dependent

2Landini [2021] also considers the application of the ab-notation to FOL. However, he does
not spell out how to realize Wittgenstein’s idea to reduce all equivalent formulas to one and
only one representative in the ab-notation for a decidable fragment of FOL.

3



on set theory. This conception of logic is powerful. It serves as the foundation
of modern mathematics and leads to far-reaching metamathematical theorems
(including the Church–Turing theorem).

However, it characterizes logical truth by a universal statement (“truth in all
interpretations”) and thus does not distinguish it by form from other universal
statements that are not logical truths. Logical truth seems to be a matter of
extensions, as any arbitrary truth of sentences. From a philosophical point of
view that insists on conceptual analysis and intends to define logical truth by
some kind of necessity, this is unsatisfactory. Wittgenstein explicitly intends to
distinguish logical truth, as “essential” or “necessary truth”, from “accidental”
truth (TLP 6.1232, 4.464, 6.375) and rejects defining truth by universal validity
(TLP 6.1231); cf. Etchemendy [1990] for a more recent prominent advocate of
this critique. A common and stringent reaction to the critique of defining logical
truth by truth in all interpretations is to abandon the philosophical ambition
of a conceptual analysis that attempts to do justice to a dubious modal claim
of logical truth and to instead be satisfied with an adequate extensional model
for logical truth based on the assignment of extensions; cf., e.g., Ray [1996] and
Shapiro [1998] in reaction to Etchemendy. Our argument in this paper intends
to support this reaction by demonstrating where and why logical truth in FOL
becomes an indispensable matter of extensions.

WPL, however, intends to solve the notorious problem of specifying the ne-
cessity of logical reasoning by defining logical truth in terms of nothing but
syntactic transformations of signs. Syntax comes first and specifies conditions
for the truth and falsehood of complex propositions or, as we will say in order
to relate Wittgenstein’s position to the standard view, syntax defines possible
models and countermodels (extensions, in short). To do so, Wittgenstein must
postulate that it is indeed possible to transform initial formulas into formulas of
a proper notation such that the form of the resulting formulas is shared with any
possible extension, thus making it possible to distinguish between models (true
interpretations) and countermodels (false interpretations) by means of proper-
ties of their symbolization. Syntax, therefore, is prior to semantics, and logical
properties such as logical truth are identified through syntactic criteria. Logical
truth becomes “truth by virtue of form” in the sense that all only formulas of an
equivalent class are reduced to one an the same expression in an ideal notation.

Judged from today, this may seem an idiosyncratic view of a philosopher’s
mind. However, it becomes a fascinating and reasonable attempt to pursue a
philosophical project as soon as one comes to see how it can be realized for
fragments of FOL. We will exemplify this for several fragments in section 4. For
now, the reader may consider truth tables as an example of a decision proce-
dure that distinguishes between models and countermodels by notation. From
Wittgenstein’s point of view, a truth table must be seen as a proper notation
that provides syntactic criteria for deciding upon the logical properties of an
initial formula that this formula itself does not provide. For example, logical
truth is identified by the fact that no ‘F’ occurs below the main connective.

To solve a problem, however, it is insufficient to merely postulate a method
of solving it. One must also show that this method does not solve only paradig-
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matic cases but solves the problem entirely. Therefore, one might admit that
solving the Entscheidungsproblem would solve the problem of how to define log-
ical truth in FOL and still insist on a proof that DPW can be realized for the
whole realm of FOL. Contrary to Wittgenstein, we thus do not accept the mere
postulation of DPW, even if it would turn out to be true that this would be
required to solve all-important problems in the philosophy of logic. Instead, we
wish to evaluate the feasibility of DPW and, thus, the philosophical project of
defining logical truth without referring to logical validity.

3 Is DPW Refuted by Metalogic?
Like many others before, Landini [2007], p. 118, simply states that DPW is
refuted by the negative solution to the Entscheidungsproblem:

The undecidability of quantification logic is a significant blow to
Wittgenstein’s conception of logic . . . it undermines Wittgenstein’s
hope of finding a notation in which all and only logical equivalents
have one and the same representation.

The proof of the Church–Turing theorem is a masterpiece of metalogic.
Wittgenstein, however, was sceptical about metamathematics (including met-
alogic). This scepticism was already evident in WPL. Wittgenstein rejected
measuring formal systems in terms of semantics. According to his view, logic is
autonomous (TLP 5.473). He laid down as a “fundamental principle [. . .] that
whenever a question can be decided by logic at all it must [upper case added]
be possible to decide without more ado”; considering anything beyond logic to
solve a problem of logic “shows that we are on a completely wrong track” (TLP
5.551). Connected with the principle that logic is autonomous is Wittgenstein’s
view that we cannot go wrong in logic because anything that is possible in logic
is also legitimate, or permitted; cf. NB 22.8.14. As a consequence of this view,
he thought that paradoxes that arise from self-reference (such as Russell’s Para-
dox or the Liar Paradox) do not need to be solved by forbidding them to be
expressed (as Russell does with his Theory of Types) but rather can be solved by
showing that it is impossible to express them (TLP 3.33-3.333). This Wittgen-
stein intends to make manifest by a suitable logical notation for FOL, since it
identifies conditions of truth by its syntax and thus ensures that whatever is
expressible in FOL has well-defined truth conditions.

To understand Wittgenstein’s scepticism towards metalogical proofs, one
must recognize that diagonal functions that permit self-reference occur not only
in paradoxes but also in metalogical proofs. Let us first consider paradoxes
before explaining why Wittgenstein’s conviction casts doubt on the proof of the
Church–Turing theorem.

Consider the interpretation of the formula P by “P is not true” or the inter-
pretation of Fx by “x is not true”. Such an intended, self-referential interpreta-
tion is not admissible (or, in Wittgenstein’s words, is not possible).3 The usual

3Cf. PR §171[8], where Wittgenstein refers by “the previous philosophy of logic” to Frege’s
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argument against such intended interpretations is that they violate principles of
semantics laid down for FOL. The former interpretation above does not assign
a truth value to P , and the latter does not assign a well-defined set to Fx. If
semantic principles are violated, applying the inference rules of FOL yields falla-
cies; FOL’s syntax applies only to propositions obeying FOL’s semantics. From
this argument, however, the general question arises of when interpretations are
admissible. Interpretations by diagonal functions are a special and relevant case
in which this question arises.

A sceptical position that does not accept semantics as standard poses the
following question: How can one know that certain intended interpretations do
not obey the principles of FOL’s semantics and, thus, are not admissible? This
question becomes relevant as soon as hypothetical reasoning comes into play. In
this case, knowledge of truth values cannot be assumed. Moreover, the question
arises of whether the unknown truth values of certain propositions are well
defined. This question becomes relevant in metalogical proofs based on intended
interpretations that make use of diagonal functions. In this case, a sceptic
may turn the question around and question the admissibility of the intended
interpretations involved rather than accepting the consequences of the proof. If
the provability of a formula and the truth value of its intended interpretation
clash, this may be taken as a criterion for asserting the inadmissibility of the
intended interpretation rather than for reducing some hypothetical assumption
to absurdity.

There is evidence that Wittgenstein’s later critique of metamathematics is
based on this sceptical attitude; cf. Anonym3 [000] for more details. However,
we neither intend to enter this discussion here nor wish to evaluate this sceptical
attitude. For our argument, it suffices to acknowledge that one can raise the
doubt that Church’s or Turing’s proof is based on assumptions that DPW is
not ready to accept. Let us illustrate this in the case of Turing’s proof.

Turing’s proof can be summarized as follows (cf. Turing [1936/37], section
11).

Turing’s Thesis: Any mechanical procedure is reducible to a Turing machine
(TM).

Halting Theorem: The halting problem is unsolvable (proof by means of the
diagonal argument).

Turing’s Lemma: A TM, started with I, halts iff Un(TM, I) is provable (→:
syntactic proof by means of proof schema; ←: semantic proof by means

and Russell’s mathematical logic in connection with the admission of the possibility of self-
reference:

The Cretan liar paradox could also be set up with someone writing the propo-
sition: ‘This proposition is false’. The demonstrative takes over the role of ‘I’ in
‘I’m lying’. The basic mistake consists, as in the previous philosophy of logic, in
assuming that a word can make a sort of allusion to its object (point at it from
a distance) without necessarily going proxy for it.

Cf. also WVC, p. 122, where Wittgenstein states that antinomies in the foundations of
mathematics arise through ambiguities in the interpretation, not in the syntax.
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of the correctness of FOL, i.e., any (admissible) interpretation of a prov-
able formula is true + application to the intended interpretations ℑi of
Un(TM, I)).

Turing’s Theorem: FOL is undecidable (proof by reductio).

Let us abbreviate the assumed machine that decides FOL as “FOL”. The
machine FOL returns 1 in the case of provability and 2 otherwise. To illustrate
the diagonal argument as expressed within the language of FOL, one can make
use of a dithering machine D that dithers if started with 1 and halts if started
with 2; cf. Boolos et al. [2003], p. 39. We abbreviate the combination of the
hypothetical machine FOL and the known machine D as FOLD. According
to Turing’s proof, one can reduce the existence of FOL to absurdity by the
following argument:

Turing: FOL cannot be decided because if it were decidable, it would be pos-
sible to express the TM FOLD applied to its own number I(DFOL) by a
formula UN(FOLD, I(FOLD)); then, however FOL decides UN(FOLD,
I(FOLD)), this would contradict Turing’s lemma.

Since Wittgenstein is suspicious of hypothetical reasoning based on a diago-
nal argument that makes use of intended, self-referential interpretations, he can
reply as follows.

Wittgenstein: This shows not that FOL is undecidable but rather that the
intended self-referential interpretation ℑi(UN(FOLD, I(FOLD))) is not
admissible.

According to Wittgenstein, semantics is the source of philosophical problems
of logic. Philosophical problems of logic are to be solved by referring to nothing
but syntactic manipulations of signs. According to this view, metalogical proofs
proving the absurdity of the hypothetical assumption of a decision procedure for
FOL on the basis of semantic notions (intended interpretations, correctness)
and a diagonal argument cannot serve as the standard for the limits of a purely
mechanical and syntactic approach. Instead, the syntax of the ideal notation is
the standard for what counts as admissible interpretations.

Of course, this reaction is not an argument against Turing’s proof. Rather,
it articulates a position that does not accept the principles of Turing’s proof
strategy. One might say that a philosopher should not question the strategies of
established proofs in science in order to save philosophically motivated postu-
lates. However, this may convince a scientist, but not a philosopher. Therefore,
in what follows, we provide a refutation of DPW that does not make use of
assumptions that DPW is not ready to accept.

4 Logical Refutation of DPW
Without loss of generality, we will restrict our logical refutation of DPW to the
logical property of being refutable (which is equivalent with being inconsistent,
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self-contradictory, logically false). This is usual in automated theorem prov-
ing (ATP). Since refutability and other logical properties such as theoremhood
(provability, logical truth, the property of being a tautology or logical propo-
sition) or nonrefutability (consistency, satisfiability) all depend on each other,
the decision on all of these properties is reducible to the decision on one of these
properties.

We take the usual syntax and semantics of FOL for granted. In particular,
we consider only calculi that are correct and complete with respect to logical
(in)validity as defined by the semantics of mathematical logic (model theory).
This does not mean that we accept the semantic foundations of FOL; it means
only that any decision procedure for deciding refutability decides a logical prop-
erty that is equivalent to the canonical definition of logical invalidity. Thus, we
do not allow DPW to be saved by relating it to some logic other than (tradi-
tional) FOL. The Entscheidungsproblem relates to traditional FOL and not to
any other logic.

Let us use the more common term “normal form” instead of Wittgenstein’s
“adequate notation”. Then, we can specify the postulate of DPW as follows.
DPW postulates that the refutability of any FOL formula ϕ is decidable by
converting ϕ into a normal form ψ that provides a general decision criterion
for refutability by virtue of ψ’s syntactic form. The conversion of ϕ into ψ is
a finite, mechanical procedure that depends on the logical constants in ϕ and
results in a normal form ψ that is equivalent to ϕ with respect to refutability.
Instead of “syntactic form”, we will also use the term “pattern”. To our under-
standing, Wittgenstein believed in a decision procedure by means of what is
currently called “pattern detection”. The decision criterion in question is a pat-
tern shared by every refutable ψ. Therefore, it can serve as a syntactic criterion
for refutability. We also take for granted that WPL demands that one can read
off, and thus generate, a model (a condition for truth) from ψ’s pattern in the
case that ϕ is satisfiable. Otherwise, the claim that ϕ/ψ shares its logical form
with whatever can be represented by ϕ/ψ would hardly make sense; cf. also the
quote from PR §174[4] and its discussion in section 5.

Let us state in advance that our argument is not a substitute for a general
undecidability proof of FOL. First, we do not reduce to absurdity the general
hypothesis of a decision procedure. Instead, we argue that the specific idea of
DPW relying on anything similar to known normal forms fails for the whole
realm of FOL. Second, and more importantly, we will show that our argument
does not refute the general idea of deciding FOL by defining some upper bound
for the application of inference rules in ATP.4 This makes evident that our

4This is an idea that Gumanski [2000] and Gumanksi [2008] suggested in order to refute
the Church–Turing theorem. Gumanski specified upper bounds for proofs in tableaux in terms
of primitive recursive functions. Matzer [2018] and Mycka/Rosa [2018] argued independently
against Gumanski’s approach, asserting that his upper bound is refuted by the provability
of formulas that translate into FOL functions that are known to be total and µ-recursive
(and thus computable) but not primitive recursive functions, such as the Ackermann–Peter
function. In footnote 9, we additionally show that Gumanski’s definition of an upper bound is
based on a misunderstanding of tableau proofs that ignores the necessity of looping. In contrast
to Wittgenstein, Gumanski’s attempt is motivated not by a definition of logical properties in
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argument is not a substitute for a proof of the Church–Turing theorem. We
argue, however, that Wittgenstein’s conviction in DPW cannot be based on
upper bound considerations because an upper bound for proving refutability
does not ensure any pattern from which to generate a model in the case of
satisfiability.

In what follows, we first briefly illustrate in section 4.1 how DPW can be
realized for some fragments of FOL before we then explain in 4.2 why it cannot
be realized for the whole realm of FOL.

4.1 DPW for FOL-fragments
There are many ways to realize DPW in propositional logic. Consider, e.g.,
disjunctive normal forms (DNFs) as normal forms ψ. Whether a propositional
formula ϕ is contradictory (refutable) can be decided by the question of whether
each disjunct of the DNF ψ of ϕ contains an atomic proposition A and its
negation ¬A. This latter property is a pattern of ψ that serves as a decision
criterion. If it is not satisfied, then one can directly read off a model from a
disjunct that does not contain a complementary pair of atomic propositional
variables.

Wittgenstein’s exemplification of DPW by his ab-notation is similar to the
case of DNFs. ϕ is contradictory iff the outermost a-pole is connected only to
opposed innermost poles (with a symbolizing truth and b symbolizing falsehood)
of one and the same propositional variable in the ab-diagram ψ of ϕ. If this is
not the case, then the remaining connections of the outermost a-pole to the
innermost poles of atomic propositional variables identify a model for ϕ. Truth
tables provide a further exemplification of DPW in propositional logic: A line
with ‘T’ below the main operation identifies a model, and if there is no such
line, then ϕ is contradictory.

DPW is also applicable to monadic FOL (the fragment of FOL with only
monadic predicates). Any monadic formula ϕ can be converted into a duplicate-
free normal form ψ′ in terms of a disjunction of conjunctions (monadic FOLDNF)
of negated or non-negated formulas of the form ∃µ(A1(µ)∧ . . .∧An(µ)), where
n ≥ 1 and the Ai(µ) are literals with only one argument. Let us call a pair of
literals, e.g. Fx and ¬Fy, with the same predicate, one negated and the other
not negated, “opposed literals”. Opposed literals that are identical except for
the negation sign, e.g. Fx and ¬Fx, are called “complementary literals”. If
a conjunction in our decision procedure for monadic FOL contains a formula
∃µ(A1(µ) ∧ . . . ∧ An(µ)) with complementary literals, then this conjunction is
contradictory and can be deleted. If the resulting monadic FOLDNF is the
empty word in this stage of the procedure, then ϕ is a contradiction; otherwise,
the resulting conjunctions of the monadic FOLDNF can be presented as a Venn
diagram ψ. In doing so, conjuncts of the form ¬∃µ(A1(µ) ∧ . . . ∧ An(µ)) with
complementary literals are omitted because they are tautologous. If the monadic
FOLDNF contains a disjunct of the form ∃µ(A1(µ)∧ . . .∧An(µ)) and a disjunct

terms of pattern detection but by a misguided, oversimplified conception of proofs in tableaux.
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of the form ¬∃µ(A1(µ)∧ . . .∧An(µ)), then all disjuncts must be deleted, and ψ
is the empty word. If ψ is the empty word in this stage of the procedure, then ϕ
is a tautology. ϕ is contradictory iff every disjunct of the monadic FOLDNF is
converted into a Venn diagram ψ with a region that is both filled (symbolizing
its emptiness) and crossed (symbolizing its nonemptiness). Otherwise, models
can be read off from the regions of ψ.

Lampert [2017a] has explained how Wittgenstein’s ab-notation can be ap-
plied to the fragment of FOL (called “elementary FOL”) with formulas ϕ that
can be converted into disjunctions of conjunctions in negated normal form and
quantifiers pulled inwards (antiprenex formulas) without dyadic connectives in
the scope of quantifiers. In this case formulas are reduced to primitive formu-
las (= complex poles in the ab-notation) with decidable logical relations (such
as being contradictory or subaltern). On the basis of identifying the logical
relations between primitives, one can convert all and only equivalent formulas
ϕ of elementary FOL to a unique DNF ψ of primitive formulas or a unique
representative ψ in the ab-notation in terms of a set of sets of complexe poles.

Within elementary FOL, the logical relations between primitive formulas
(complex poles in the ab-notation) are decidable because one need not increase
the complexity of the primitive formulas (complex poles in the ab-notation) in
order to identify their logical relations. This property corresponds to the so-
called finite model property, i.e. the fact that a certain fragment of FOL is
decidable by considering only a finite number of models. The all important
point is that a representative ψ can be generated where one can read off a
finite number of possible extensions that make the initial formula ϕ true or false
respectively.

The realm and results of elementary FOL can be extended to antiprenex
formulas with ∧ as the only dyadic connective in the scope of universal quan-
tifiers. These formulas are known as “Herbrand formulas” and are known to be
decidable. Gladstone [1966] has proven that Herbrand formulas in FOL without
identity have the finite model property.

One way to generate normal forms ψ that satisfy the conditions of DPW
from Herbrand formulas is by converting the Herbrand formulas into their clause
forms. Clause forms are sets of clauses, where a clause is a set of literals. Quan-
tifiers are eliminated by replacing existential quantifiers with Skolem functions.
Since existential quantifiers are eliminated, universal quantified variables oc-
cur free. No free variable occurs in more than one clause. The approach of
converting FOL formulas into clause normal form and processing the resulting
clause forms is standard in ATP. Herbrand formulas can be converted into sets
of clauses of length 1. In the special case of clause forms with clauses of length
1, it is sufficient to consider up to nm substitutions of the m free variables and
n Skolem functions to solve the decision problem. If none is a contradiction,
then the formula is satisfiable, and a finite model with no more than n objects
can be generated. Thus, any FOL formula ϕ that can be converted into a dis-
junction of Herbrand formulas can be reduced to a propositional DNF ψ with
disjuncts that are conjunctions of the translations of all nm substitutions of the
free variables of the clause form of a Herbrand formula.
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The same is true for formulas ϕ that do not have any existential quantifiers
in the scope of universal quantifiers. In this case, it is also sufficient to realize
nm alternative substitutions; cf. Börger et al. [2000], Proposition 6.2.17, p. 257.
Again, DPW is realizable by reducing the decision problem to a propositional
DNF ψ such that we can read off a model from a disjunct that does not contain
complementary literals.

However, for a case with both disjunctions and existential quantifiers in the
scope of universal quantifiers, satisfiable formulas may have only infinite models.
Thus, in this case, we cannot reduce the decision problem to a normal form ψ
that allows one to read off models or counter-models. The question arises of
how DPW treats infinity in FOL.

4.2 Infinity axioms
Without loss of generality, we will consider the problem of identifying models
and countermodels for sets of clause forms. Infinity axiom sets (in short: infinity
axioms) are consistent sets of clauses that have only infinite models. For the
following, it will suffice to consider sets of so-called Krom–Horn clauses without
identity. Krom–Horn clauses are clauses in Skolem form with maximal length 2
and at most one non-negated literal. Krom–Horn clauses correspond to formulas
with disjunctions of maximal length 2 in the scope of quantifiers. Sets of Krom–
Horn clauses without identity are the simplest fragment of FOL that is known
to be undecidable; cf. Börger et al. [2000], section 5.1.1. Of course, we do not
presume the undecidability of this FOL fragment for our reasoning. We merely
refer to consistent sets of Krom–Horn clauses that have no finite models.

ϕ : ∀x1¬Fx1x1 ∧ ∀x2∃y1(Fx2y1 ∧ ∀x3(Fx3y1 ∨ ¬Fx3x2)) (1)
ϕ′ {{¬Fx1x1}, {Fx2sk1(x2)}, {Fx3sk1(x4),¬Fx3x4}} (2)

Consider (1) and its clause form (2)5, which is an infinity axiom set (cf.
Börger et al. [2000], p. 33). Since no finite model is available, we cannot simply
read off a model via a one-to-one correspondence between some finite pattern
of a normal form ψ and a model.Instead, some finite repeating pattern must be
present to identify an infinite model.6 Since converting ϕ into a normal form

5Note that skolemization is followed by the rectification of universal variables. For this
reason, different clauses have different variables.

6According to the Tractatus, a proposition is a truth function of atomic propositions. Truth
functions are generated via the successive application of logical operations to all values of a
propositional variable. TLP 5.501 distinguishes three methods for describing the values of such
a variable: (i) by means of a finite enumeration, (ii) by means of a propositional function,
and (iii) by means of a formal law, which we interpret as a rule for repeating a pattern. (1)
is satisfiable only if there are infinitely many atomic propositions of the form Fxy, that is,
if this propositional function has infinitely many values. An infinity axiom set such as (1)
cannot, therefore, be translated into a finite normal form ψ in terms of a finite DNF such that
a finite model can be read off from each of its disjuncts. We argue that Wittgenstein needs
to stipulate normal forms ψ in terms of method (iii) in the case of infinity axioms. Such a
normal form will necessarily involve the construction of “infinite conjunctions” by means of
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¬Fsk1(sk1(sk1(x42)))sk1(sk1(sk1(x42)))

Fsk1(sk1(sk1(x42)))sk1(sk1(sk1(x42))) ¬Fsk1(sk1(sk1(x42)))sk1(sk1(x42))

Fsk1(sk1(sk1(x42)))sk1(sk1(x42)) ¬Fsk1(sk1(sk1(x42)))sk1(x42)

Fsk1(sk1(sk1(x42)))sk1(x42)) ¬Fsk1(sk1(sk1(x42))x42

...
...

Figure 1: Endless Proof Search in ATP for (2)

ψ is an equivalence procedure with respect to refutability and ATP produces
automated sequences of formulas preserving refutability, ψ must be the result
of ATP.

Figure 1 presents the first four steps of a proof search in tableaux for (2).
The proof search is deterministic for the special cases of Krom–Horn clauses
that we consider7, that is, there are no alternative tableaux to consider. Proof
search in tableaux is identical to proof search in resolution in the special case of
Krom–Horn clauses. However, our considerations are independent of the special
calculus that we choose and the special normal form that we consider. Whatever
calculus and normal form we choose, infinity axioms cannot be identified from a
finite normal form and an ATP-search will run in an endless loop.Therefore, our
question is whether it is possible to read off infinite models from some normal
form ψ generated in ATP with a repeating pattern. We will discuss this for
ATP in tableaux/resolution for the special case of infinity axioms in terms of
Krom–Horn clauses with a deterministic proof search. From this proof search
case, it will be seen that no other known proof search can do better.

The proof search for (2) in tableaux will go on forever, repeating the utiliza-
tion of the same clause, with the only difference being that in the nth inference
step, the variable x42 is replaced by sk1(x41) (with x41 being a new variable) if
n is odd or x21 is replaced by sk1(x42) (with x42 being a new variable) if n is

method (iii), where every conjunct must ultimately refer to distinct elementary propositions
in such a way that an infinite model can be read off from this construction. The question
facing Wittgenstein’s conjecture with respect to infinity axioms is, therefore, whether it is
possible to translate a formula ϕ that describes an infinite structure into a formula ψ that
contains a finite repeating pattern from which an infinite model can be read off. Cf. also our
remarks at the beginning of section 5.

7Recall that a proof search that starts with clauses that have no positive literals is complete,
cf. Letz/Stenz [2006], p. 2040. Our ATP-search for Krom-Horn clauses is based on the strong
tight connection tableaux calculus described in this paper.
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even. From this, it follows that the nesting of the Skolem functions increases by
1 in each inference step. This is not an exact repetition, which would allow ter-
mination of the proof search on a proof path in accordance with the regularity
criterion. However, the repetition is “almost” exact in that the same inference
step is repeated with the same substitutions, merely increasing the nesting of
the resulting Skolem functions by 1. There is no way for any known correct
calculus to make the repetitions of the inference steps and the resulting formu-
las more similar. This is why our considerations do not depend on a particular
selection of the tableau and clause forms.

The proof search for (2) obviously enters an infinite loop, with endlessly
repeating substitutions. The question for DPW is whether we can take a finite
number of loops with endless repeating substitutions as a criterion for infinite
models. In the following, we demonstrate that and explain why this is not the
case.

ϕ :

∀x1¬Fx1x1 ∧ ∀x2∃y1(Fx2y1 ∧ ∀x3(Fx3y1 ∨ ¬Fx3x2)∧
∀x4(Fy1x4 ∨ ¬F1x2x4) ∧ ∀x5(F1y1x5 ∨ ¬F2x2x5)∧

∀x6(F2y1x6 ∨ ¬Fx6y1))
(3)

ϕ′ :

{{¬Fx1x1}, {Fx2sk1(x2)}, {Fx3sk1(x4),¬Fx3x4},
{Fsk1(x5)x6,¬F1x5x6},

{F1sk1(x7)x8,¬F2x7x8}, {F2sk1(x9)x10,¬Fx10sk1(x9)}}
(4)

Consider (3) and the proof of its clause form (4) in Figure 2. (3) contains (1)
as part of the expression and adds formulas of the form ∀xk(Fiy1xk∨¬Fi+1x2xk)
(i starts with the empty word and then runs from 1 to m − 4; k runs from 4
to m − 1) plus a final clause ∀xm(Fm−4y1xm ∨ ¬Fxmy1). (4) contains (2) as
a proper part, and a proof of (4) must make use of all clauses in (4). Figure 2
shows that the proof starts in the same manner as the proof search in Figure
1 does; cf. the underlined literals. Through the insertion of further conjuncts
of the form ∀xk(Fiy1xk ∨ ¬Fi+1x2xk) into (3), the number of initial repeating
steps necessary for the proof can be increased to any arbitrary number before
it finally terminates by utilizing axiom 2 (= clause 2 in (4)). This demonstrates
that repetitions of substitutions that do nothing but increase nesting by 1 cannot
determine the occurrence of any infinite repetitions in models. They may run
in an endless loop, as in Figure 1, or they may be necessary for a proof, as in
Figure 2.

The critical point for DPW is that there is no pattern in the case of endless
repetitions of inference steps that can serve as a sufficient criterion for the exis-
tence of infinite models and, thus, satisfiability. Of course, one can argue that
the number of repetitions needed for the proof of (4) depends on the number of
clauses of the form {Fisk1(xj)xk,¬Fi+1xjxk}. However, other refutable formu-
las can be trivially generated in which the number of loops exceeds the number
of clauses to any arbitrary extent or in which the number of loops depends on
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¬Fsk1(sk1(sk1(x10)))sk1(sk1(sk1(x10)))

Fsk1(sk1(sk1(x10)))sk1(sk1(sk1(x10))) ¬Fsk1(sk1(sk1(x10)))sk1(sk1(x10))

Fsk1(sk1(sk1(x10)))sk1(sk1(x10)) ¬Fsk1(sk1(sk1(x10)))sk1(x10)

Fsk1(sk1(sk1(x10)))sk1(x10)) ¬Fsk1(sk1(sk1(x10)))x10

Fsk1(sk1(sk1(x10)))x10 ¬F1sk1(sk1(x10))x10

F1sk1(sk1(x10))x10 ¬F2sk1(x10)x10

F2sk1(x10)x10 ¬Fx10sk1(x10)

Fx10sk1(x10)

Figure 2: Tableau Proof for (4)
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the length of the literals; cf. Anonym2 [000]8.
This finding is independent of any correct and complete proof search calcu-

lus. In any case there is an infinite number of pairs < ϕ1, ϕ2 > of Krom-Horn
formulas such that ϕ1 is an infinity axiom and ϕ2 is a refutable formula such
that the proof search for ϕ1 goes on forever while the proof of ϕ2 shares a finite
number of steps with the proof search of ϕ1. Either the calculi and the nota-
tions they are based on (e.g. with or without skolemization) produce repeating
patterns in the proof search or not. In the latter case, decidability by pattern
detection is impossible due to the lack of patterns. In the former case, apply-
ing the pattern of repetition as criterion of satisfiability would render the proof
search incorrect by identifying refutable formulas as satisfiable.

One might still think to save DPW by stipulating that there must exist
some upper bound on the number of loops with repeated substitutions that
is computable from the number of syntactic features of some normal form.9
We do not purport to show that no upper bound on the length of economi-
cal proofs is definable. However, we do argue that such reasoning cannot be
motivated by WPL. Postulating that possible models are to be identified by
pattern detection is well motivated by (i) decision procedures for fragments of
FOL, as illustrated in section 4.1, and (ii) the philosophical project of identify-
ing possible extensions by syntactic criteria instead of defining logical properties
semantically by assignments of extensions, as argued in section 2. This postu-
late implies the possibility of identifying infinite extensions from repetitions of
patterns. Our reasoning refutes only this implication and not the postulate of
some upper bound on a proof search. The refutation of any attempt to decide
FOL, whether or not it is reasonable or even conceivable, can be achieved only
by the traditional proof of the Church–Turing theorem.

We conclude that DPW is refuted by the existence of infinity axioms and the
fact that refutable formulas exist with proofs that (i) are based on all clauses
of the clause forms of infinity axioms and (ii) share a finite and necessary part
with the endless looping observed in the proof searches for infinity axioms. This
refutes DPW because it demonstrates that there is no (finite) pattern that
allows the identification of infinite models. It is, one may say, only the endless
repetition itself that is indicative of infinite models. However, this is no decision
criterion.

8This paper provides a general method of converting so called splitting Turing machines
(STMs) to Krom-Horn clauses. Pairs of STMs, one non-halting and one halting, can thus be
converted to Krom-Horn clauses that share the beginning of the proof search, while one loops
forever and the other terminates by finding a proof.

9Gumanksi [2008] seems to mistakenly miss the necessity of looping on a proof branch at all.
He argues for his upper bound of (1+n)·n

2
·m+n (m = maximum number of positions of initial

literals, n = number of disjuncts of a DNF of the initial clauses) based on the assumption
that in any economical proof, the number of unified positions necessary for an economical
proof increases by at least 1, and argues that an upper bound is definable by the totality of all
positions of all pairs of literals stemming from different initial clauses. However, this ignores
the fact that to unify a pair of literals, it might be necessary to repeat the unification of one
and the same pair of literals many times, where this pair of literals stems from one and the
same clause.
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5 Wittgenstein’s Philosophical Must
One can only speculate whether Wittgenstein was aware of the existence of
infinity axioms in the Tractatus. He did not deny an infinite domain but in-
sisted that the number of objects was a matter that could be decided only by
the application of logic (TLP 5.55, 5.557). He denied the possibility of assert-
ing meaningful propositions about the number of objects (TLP 4.1272, 5.55).
Instead, he believed that the number of objects was a presupposition of the
meaning (sense) of propositions (TLP 4.1211). For him, the number of objects
could only manifest through the number of names in a fully analysed language
(cf. Anonym1 [000] for a recent discussion of this point). An infinite number of
objects would manifest in an infinite number of names (TLP 5.535).

Therefore, Wittgenstein seemed not to necessitate a finite possibility of pre-
senting an infinite totality by some pattern with respect to the number of objects
(the cardinality of the domain). However, infinity axioms are represented not
by bound variables but by FOL formulas. By definition, infinity axioms can
only be satisfied in an infinite domain. By conjecturing decidability, Wittgen-
stein seemed to assume that, in such cases, it must be possible to translate a
description of an infinite structure in terms of a proposition into a presentation
of it in terms of a formal series; cf. footnote 6. According to Wittgenstein,
a formal series is defined inductively and, thus, by finite means (TLP 4.1252,
4.1273, 5.2522f.). He accused Russell and Frege of having missed the possibility
of describing an infinite number of propositions by a formal series (PT 5.005341)
and of not distinguishing between propositional functions and operations, which
prescribe how to generate a formal series through iterative application (TLP
5.25-5.252). Thus, if he was aware of infinity axioms, he might have thought
that the infinity of possible models satisfying a FOL formula must be presentable
by some sort of symbolic repetition. Wittgenstein argued similarly for infinite
series of numbers in his middle period.10

In his middle period, however, he was aware of infinity axioms and seemed
to have come to understand that it is unclear how his belief in pattern detection
can be applied to infinity axioms. In PR §147[4], he writes:

Each thing has one and only one predecessor; a has no succes-
sor; everything except for a has one and only one successor.’ These
propositions appear to describe an infinite series (and also to say
that there are infinitely many things. But this would be a presuppo-
sition of the propositions’ making sense). They appear to describe a
structure amorphously. We can sketch out a structure in accordance
with these propositions, which they describe unambiguously. But
where can we discover this structure in them?

10Cf., e.g., PR §190[2]:
I must [upper case added] be able to write down a part of the series, in such

a way that you can recognize a law. That is to say, no description is to occur in
what is written down, everything must be represented [dargestellt].
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Let us translate Wittgenstein’s wording into the wording of this paper.
Wittgenstein considers the following set of axioms in FOL with identity:

∀x∃y(Syx ∧ ¬∃z(Szy ∧ y ̸= z)),

ϕ : ¬∃zSaz, (5)
∀x(x ̸= a→ ∃y(Sxy ∧ ¬∃z(Sxz ∧ y ̸= z)))

with the following intended interpretations:

ℑi(S(y, x)) : x is the successor of y.

ℑi(a) : 0.

(5) is true only in an infinite domain, e.g., the negative numbers.
The problem for Wittgenstein is that ℑi(ϕ) is a propositional description

of an infinite model (“structure”) without providing any pattern presenting it.
Therefore, his final question can be translated as follows: Is there some ψ, com-
putable from ϕ, such that some infinite ℑi(ϕ) can be identified from a pattern
of ψ?

This is a serious question that Wittgenstein does not answer. As we saw in
the previous section, it has no positive answer.

Only slightly later in PR, his philosophical dilemma becomes clear. This
time, he considers not the decidability of FOL but that of equations. How-
ever, this does not make a significant difference to the principal postulate of
decidability, PR §174[11,12,14]:

Undecidability presupposes that there is, so to speak, a subter-
ranean connection between the two sides; that the bridge cannot be
made with symbols.

A connection between symbols which exists but cannot be rep-
resented [dargestellt] by symbolic transformations is a thought that
cannot be thought. If the connection is there, then it must (upper
case added) be possible to see it.

[. . .]
Of course, if mathematics were the natural science of infinite ex-

tensions of which we can never have exhaustive knowledge, then a
question that was in principle undecidable would certainly be con-
ceivable.

Wittgenstein’s postulate of decidability is based on a philosophical rejection
of genuine propositions about infinite extensions. He seemed to believe that
such a view is not reasonable and intended to refute it through philosophical
analysis. Prima facie, this is acceptable as a philosophical project. However,
it is in danger of immunizing itself. One must admit at some point that the
whole project becomes unreasonable if it cannot cope with problems with which
it must be able to cope by its own standards. One cannot simply postulate
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(cf. the highlighted “must” in several quotes in this paper) what one is willing
to show; one must prove it and accept the consequences when one is not able
to do so. After all, philosophical ambitions must face the reality of logic and
mathematics. Denying infinite extensions while allowing for traditional FOL,
which includes formulas that are neither refutable nor satisfiable within a finite
domain, is not compatible. The former forces one to restrict oneself to decidable
fragments of FOL with the finite model property for philosophical reasons, which
is not acceptable from a logical point of view taking full FOL as standard logic.

Abbreviations of Wittgenstein’s Writings
CL: Cambridge Letters, Oxford: Blackwell.

NB: Notebooks 1914-1916, Oxford, Blackwell, 1979.

NL: “Notes on Logic”, in Notebooks 1914-1916, Oxford, Blackwell, 1979, 93-107.

PR: Philosophical Remarks, Oxford: Blackwell, 1975.

PI: Philosophical Investigations, 4th edition, Indeanapolis: Wiley Blackwell,
2009.

PT: Prototractatus, London: Routledge, 1971.

RFM: Remarks on the Foundations of Mathematics, 2nd edition, Cambridge/
Ms: M.I.T. Press, 1967.

TLP: Tractatus Logico-Philosophicus, London: Routledge, 1994.

WVC: Wittgenstein and the Vienna Circle, Oxford: Basil Blackwell, 1979.
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