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Abstract

This paper systematically outlines Wittgenstein’s ab-notation. The
purpose of this notation is to provide a proof procedure in which or-
dinary logical formulas are converted into ideal symbols that identify
the logical properties of the initial formulas. The general ideas un-
derlying this procedure are in opposition to a traditional conception
of axiomatic proof and are related to Peirce’s iconic logic. Based on
Wittgenstein’s scanty remarks concerning his ab-notation, which al-
most all apply to propositional logic, this paper explains how to extend
his method to a subset of first-order formulas, namely, formulas that
do not contain dyadic sentential connectives within the scope of any
quantifier.
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1 Introduction

Wittgenstein’s contribution to logic in the Tractatus is often associated with
truth tables. However, it is rarely noted that Wittgenstein never used his
‘TF-schemata’ as a decision procedure for propositional formulas. Instead,
he designed his so-called ab-notation for this purpose, between 1912 and
1914. At that time, he was also confident in applying this notation to the
entire realm of first-order logic (FOL).! Unlike truth tables, the ab-notation
contains quantifiers.? However, Wittgenstein never seriously attempted to
spell out his ab-notation for FOL or for parts thereof. In the Tractatus,

1Cf. CL, letter 30 (p. 53) and letter 32 (p. 57).
2Cf. NL (p. 96[1]).



he described a method similar to the ab-notation to illustrate his idea of
logical proof that allows one to identify logical properties such as logical
truth ‘from the symbol alone’ (TLP 6.113). However, the method described
in the Tractatus applies solely to propositional logic.® In contrast to his
work during the period from 1912 to 1914, in the Tractatus, he defined
generality in terms of infinite sets of propositions. This might have abated
his interest in a notation that does not eliminate quantifiers. Wittgenstein
later disavowed his reductive analysis of quantifiers as ‘the biggest mistake’
of the Tractatus (von Wright (1982, p. 151)). Consequently, he returned to
a non-reductive analysis of quantified formulas.® Yet, he never took up his
initial ab-notation again, nor did he ever illustrate in detail how his idea of
logical proof applies to FOL.

It is often recognised that Wittgenstein’s conception of proof is incom-
patible with the Church-Turing theorem. Landini (2007, pp. 112-118)
accurately observes that Wittgenstein’s idea of a logical proof implies a de-
cision procedure in terms of an algorithmic translation of FOL formulas
into symbols of an ideal notation ‘in which all and only logical equivalents
have exactly one and the same expression’ (p. 112). The Church-Turing
theorem implies that this is impossible for the entire realm of FOL. Con-
sequently, most scholars have rejected Wittgenstein’s conception of logic in
general and his ab-notation in particular because Wittgenstein’s program-
matic claim that his idea of proof applies to FOL appears to be refuted by
modern logic.®

However, although Wittgenstein did not present any details regarding
how to realise his conception of proof in the realm of FOL and its full realisa-
tion in that realm seems utopian, his basic idea of a procedure for translating
ordinary FOL formulas into symbols of a notation that provides criteria for
identifying the logical properties of the initial formulas is rather clear-cut.
Such a procedure is an alternative to an axiomatic proof procedure that
derives theorems from axioms within a correct and complete calculus. Con-
trary to a traditional conception of logic, Wittgenstein’s approach does not
separate a theory of deduction from the semantics that serve as a standard
for the correctness and completeness of the calculus. Instead, the calculus
is replaced by a translation algorithm that is intended to interpret initial

*Cf. TLP 6.1203.

1Cf. TLP 5.5-5.503, 5.52, 6.

5Cf. VW (pp. 162-170, cf. in particular p. 165: ‘the concept “all” is a primitive
concept’).
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formulas by means of resulting ideal symbols that identify the conditions
for truth and falsehood and, consequently, identify the logical properties of
instances of the initial formula.

As noted by Potter (2009, p. 182), Wittgenstein’s conception of logic
leaves no room for understanding a formula independently of understanding
its logical properties. For Wittgenstein, understanding logical formulas is
not like understanding an ordinary question without knowing its answer. In-
stead, it is rather like understanding the sense of a sentence by understanding
its inferential relations to other sentences. One does not understand logical
formulas if one cannot make judgements regarding their logical equivalence.
Thus, paraphrases of or reading algorithms for ordinary formulas as well as
semantics that interpret formulas in accordance with their logical hierarchy
with respect to some given interpretation (such as model theory) become
obsolete from this perspective. The same applies to a proof procedure that
identifies no more than theoremhood without elucidating logical proper-
ties according to the syntactic properties of symbols. Instead, Wittgenstein
endorses a translation procedure based on nothing but equivalence trans-
formation, leading to unambiguous representatives of classes of equivalent
formulas that serve to answer all relevant logical questions. Thus, even if
one does not believe in the realisability of Wittgenstein’s approach to logic
within the entire realm of FOL, it is interesting to study it in more detail
when comparing alternative approaches to logic.

2 Wittgenstein and Peirce

Wittgenstein’s approach might best be understood as a variant of an iconic
logic that is placed in opposition to traditional symbolic logic. This dis-
tinction, and the most prominent and well-elaborated version of such an
iconic logic, is related to Peirce’s existential graphs, which have been stud-
ied in considerable detail recently.” Peirce distinguishes two purposes of
logic: to investigate logical theories and to aid in the drawing of inferences.®
A logical calculus serves the latter purpose, whereas a logical system serves
the former. Such a system should explain what is expressible by means of
logic. To this end, it must not allow for ‘any superfluity of symbols’ (Peirce,
(1931-1958, 4.373)):

It should be recognised as a defect of a system intended for log-
ical study that it has two ways of expressing the same fact, or any

"Cf., in particular, Shin 2002 and Dau 2006.
8Cf. Peirce (1931-1958, 4.373).



superfluity of symbols, although it would not be a serious defect for a
calculus to have two ways of expressing a fact.

Wittgenstein did not explicitly distinguish these two purposes of logic
as Peirce did. However, similar to Peirce’s distinction between the calculi
of symbolic logic and his existential graphs, Wittgenstein drew a distinction
between the axiomatic proof method and his own proof method.? On the
one hand, he emphasised that the two methods are equivalent (i.e., do not
differ in their results).!® On the other hand, he regarded the traditional
method of symbolisation that allows for ‘a plurality’ of equivalent symbols
as defective as soon as one considers the analysis of propositions (NL (p.
102[3]); see also NL (p. 93[1]) and TLP 5.43):

If p = not — not — p etc.; this shows that the traditional method
of symbolism is wrong, since it allows a plurality of symbols with the
same sense; and thence it follows that, in analysing such propositions,
we must not be guided by Russell’s method of symbolising.

Iconic logic might be distinguished from symbolic logic by the search for
a translation procedure to a proper, unambiguous symbolism that does not
permit any ‘plurality’ or ‘superfluity’ of symbols and, thus, allows one to
decide logical problems by means of the properties of that symbolism. In
this respect, Wittgenstein’s account of logic is iconic, and his ab-notation is
designed to satisfy the purposes of an iconic logic.

Wittgenstein regarded the need for a theory of deduction and for seman-
tics that extend beyond pure logic as a result of a deficient symbolism that
makes it impossible to identify ‘the sense’ of propositions (i.e., the conditions
for or possibilities of their truth and falsehood) by means of the symbolic
features of an unambiguous symbolism that does not allow for different yet
logically equivalent expressions. According to Wittgenstein, it is not reality
(facts) but the logical possibilities of truth and falsehood (logical pictures of
facts) that are represented by propositions that instantiate logical formulas.
Logical formulas concern the logical form of such a representation, and this
form is represented by ideal symbols of a proper notation. Logical proper-
ties (such as being tautologous or contradictory) and logical relations (such
as logical implication or equivalence) follow from the identification of the
logical possibilities of the truth and falsehood of propositions. The purpose
of Wittgenstein’s ab-notation is to identify logical properties and relations
by means of a proper symbolism. Wittgenstein’s ab-notation is based on the
principle of bipolarity, which calls for some sort of symbolic symmetry to

9Cf. MN (p. 109), TLP 6.125.
10Cf. TLP 6.125f. and WVC (p. 80).



represent the difference between the possibilities of truth and of falsehood.
In this respect, Wittgenstein’s ab-notation differs from Peirce’s existential
graphs, which rather seem to be guided by the idea of representing real
facts.!! More generally, Wittgenstein’s account of logic differs from Peirce’s
approach in that it calls for bipolarity as a fundamental property of a proper
logical notation, whereas Peirce claims that ‘symmetry always involves su-
perfluity’ and that symmetries ‘are great evils’ for ‘the purposes of analysis’
(Peirce (1931-1958, 4.375)).

Given that the purpose of iconic logic is to provide a tool for analysing
instances of logical formulas (propositions) ‘by finding a form of representa-
tion in which all and only logical equivalents have exactly one and the same
expression’ (Landini, (2007, p. 112)), designing an ‘iconic’ proof (or even
decision) procedure in terms of an algorithmic translation of logical formu-
las into their representatives in a proper notation (including a final reading
algorithm for those representatives) is the ultimate goal of this logic. Based
on this understanding, it is remarkable that neither Peirce’s graphs nor
Wittgenstein’s remarks on his ab-notation achieve this goal. This is even
true in the case of propositional logic. To my knowledge, specifying such a
translation procedure for a relevant subset of FOL is still a desideratum of
logical studies.'?

Wittgenstein motivated his conception of proof philosophically. He looked
for a conception of logic that reduces the study of logical properties to pure
formal properties that can be identified from properties of a proper symbol-
ism. However, he was simply not interested in doing the necessary logical
work to explicitly express his programmatic claims. This work must still be
done if one wishes to seriously discuss his understanding of logic. The aim of
this paper is to define Wittgenstein’s ab-notation for a relevant fragment of
FOL in terms of a translation procedure that translates all logically equiva-
lent ordinary FOL formulas into one and only one representative within the
ab-notation. As a starting point, I will achieve this for propositional logic
(section 3). I will then extend the procedure to what I call ‘elementary FOL’,

YCf. Shin 2002, p. 52.

12Qhin 2002, p. 93 notes that the ‘work on EG [existential graphs] has concentrated
on translating from graphs of EG to symbolic languages’. This is also true of her own
work. However, she also ‘reverses the traditional relationship’ (ibid) by specifying an
algorithm for translating propositional formulas into a-graphs. Unfortunately, she does
not discuss an analogous translation procedure for first-order formulas (with identity)
and B-graphs. Moreover, although she notes that Peirce’s existential graphs assign the
same graphs to some equivalent formulas (p. 95), she does not discuss procedures for
transforming existential graphs such that all equivalent formulas of some relevant part of
FOL are related to one and the same graph.



i.e., FOL formulas (without identity) that do not contain dyadic sentential
connectives within the scope of quantifiers (section 4). Within this fragment
of FOL, not only is it decidable whether a given formula is logically true (or
false), but one can also nicely demonstrate (i) how to achieve representatives
that allow one to read off the conditions for truth and falsehood of instances
of the initial formulas for each class of equivalent formulas and (ii) how to
analyse the logical relations between different equivalence classes by means
of relations between the syntactic properties of their representatives.

3 Propositional Logic

TLP 6.1203 describes a method for ‘recogniz|ing] an expression as a tau-
tology’ that differs from the ab-notation in only two respects: (i) 7" and F
are used instead of a and b as the poles of propositional variables, and (ii)
it is explicitly restricted to propositional logic. I begin the discussion of
Wittgenstein’s ab-notation by describing this method before discussing how
it can be generalised to elementary FOL. As elementary FOL is the more
general case, I will specify the necessary rules explicitly in section 4, whereas
in this section, I will focus on basic features of the ab-notation as they arise
from Wittgenstein’s remarks.

In TLP 6.1203, Wittgenstein basically describes how to translate a given
formula into a diagram and how to decide, based on properties of the dia-
gram, whether the initial formula is a tautology. As we will see in this sec-
tion, Wittgenstein’s diagrams are rather cumbersome compared with truth
tables or disjunctive normal forms. Section 4, however, will show that the
complexity of Wittgenstein’s diagrams is due to the intention to extend the
ab-notation to FOL.

Wittgenstein draws a significant distinction between the properties of a
given ab-diagram in general and its ‘symbolising’ properties.'> Only symbol-
ising properties are significant as the identity criteria for logical properties.
ab-diagrams, as well as formulas and signs, may, in general, differ. However,
all equivalent formulas are represented by one and the same symbol, which
must be read from the ab-diagram. To identify ‘the symbol’ that is repre-
sented by an ab-diagram, I distinguish between ab-diagrams and ab-symbols.
I will describe a procedure for generating ab-symbols from formulas via ab-
diagrams. Let us begin with the construction of diagrams from propositional
formulas, as described by Wittgenstein in TLP 6.1203.

13Cf. NL (p. 99[2]) and MN (p. 115).
111 addition to TLP 6.1203, one can find three ab-diagrams of propositional logic in



3.1 ab-Diagrams

To convert a formula into its ab-diagram, the formula must be parsed from
inside to outside in accordance with its logical hierarchy. First, each oc-
currence of a propositional variable is provided with an a-pole to the left
and a b-pole to the right. Therefore, instead of p, one must write apb (CL
(letters 28 and 32)), or, similarly, a — p — b (e.g., NL (pp. 94[6] and 106[3]),
MN (p. 114f.), and CL (letter 28)). The position of the poles is not signifi-
cant.'® However, it is important that two poles are assigned. This makes it
explicit that propositions differ in form from names. Bipolarity is the sym-
bolic criterion for the logical possibility that a proposition may be true or
false. Because of this criterion, a semantic principle of bivalence that refers
to (actual) truth values of certain propositions is superfluous. The symbolic
representation of bipolarity is also a significant difference of Wittgenstein’s
ab-notation with respect to Peirce’s a-graphs.

In ab-notation, the arbitrary signs a and b are used instead of T and
F to emphasise that these poles do not have fixed meanings. Instead, it is
only the structure, or, more precisely, the relations of the outermost a- and
b-poles to innermost a- and b-poles that is relevant to the meaning of an ab-
diagram.'® Thus, all intermediary poles do not contribute to the meaning
of an ab-diagram; they are not part of the ab-symbol but only part of the
process to generate the resulting ab-symbol. Paraphrasing a —p — b as ‘An
instance of p is true iff it is true and false iff it is false’!” makes it explicit
(i) that atomic propositions are truth functions of themselves'® and (ii) that
the interpretation of the form of a — p — b arbitrarily decrees that a is to
the left of p as a symbol of the condition for truth and that a is not to
the right of p as a symbol of the condition for falschood!'®. By contrast,
the symbol p alone does not provide any structural features on which such
an interpretation could rely and may, thus, misinterpreted as a name that
refers to a truth value.

Sentential connectives, such as =, A, V and —, are translated by ab-

Wittgenstein’s early writings: CL, letter 32 (p. 57; cf. p. 9); NL, B25, printed in Biggs
1996, p. 30; and MN (p. 115).

15Cf. CL (letter 28, point (2), p. 47) and NL (p. 102[3)).

'5Cf. MN (pp. 114[4] and 115[4,5]).

17Strictly speaking, this is only a mechanical paraphrase of the ab-symbol of p in terms
of the two pole-groups a — {a — p} and b — {b — p}; c¢f. p. 11 below. In contrast to
its ab-diagram a — p — b, in the ab-symbol of p, the outermost and innermost poles are
separated.

8Cf. TLP 5.

9Cf. NL (p. 102[4,8]) and MN (p. 115[4,5]))



operations, i.e., by operations that assign a- and b-poles to a- and b-poles
in turn. Therefore, the formula —p is converted into an ab-diagram by first
writing a — p — b and then applying the ab-operation that translates the
negator. This operation assigns the b-pole to the a-pole and the a-pole to
the b-pole. Thus, one derives b — a — p — b — a as the ab-diagram of —p.

In addition to negation, there are 14 other ab-operations. These addi-
tional operations assign a- and b-poles to the four pairs of poles aa, ab, ba,
and bb. Each dyadic sentential connective is defined by one ab-operation.
Note that ab-operations that assign only the a-pole or only the b-pole to
all four pairs of poles do not exist. This fact illustrates a difference be-
tween ab-operations and truth functions: tautology and contradiction are
truth functions but not operations. Sentential connectives are defined as
ab-operations, not as truth functions, in the ab-notation. Their definitions
are used to generate ab-diagrams in the process of identifying ab-symbols.
ab-symbols alone are unambiguously paraphrased as representations of truth
functions in terms of functions of the truth and falsehood of complex propo-
sitions of the truth and falsehood of atomic propositions. ab-operations can
be applied iteratively, and they can cancel each other?’; they are essential
parts of an algorithm. Truth functions, by contrast, result from the inter-
pretation of the result of an algorithmic construction. Identification of a
tautology relies not on a special ab-operation but rather on a property of
an ab-diagram that results from applying ab-operations. The definitions of
the particular sentential connectives are defined with respect to the inter-
pretations of the resulting ab-diagrams as truth functions, but they are not
identical to the definitions of truth functions. For example, V is defined
such that the ab-diagram of pV q represents the truth function ‘p or ¢’. The
same, however, is true of =(—p A =¢), which does not contain V. All these
differences result from introducing bipolarity as a symbolic feature within
the ab-notation. Ordinary notation, meanwhile, misleadingly suggests that
a formula such as p V ¢ should be read in the same way as aRb.

In ab-diagrams, a- and b-poles are grouped in pairs using curly brackets
(see Figure 1). Because every dyadic ab-operation assigns both the a-pole
and the b-pole to pairs of poles, the four possible pairs of poles, aa, ab,
ba, and bb, must serve as the bases for any further applications of dyadic
ab-operations. Therefore, one and the same definition of a given sentential
connective applies in every case.

For example, the ab-diagram of the formula p <> p is generated by first
writing down apb twice and then combining the four possible pairs of poles,

20Cf. TLP 5.251 and 5.253.



aa, ab, ba, and bb, using curly brackets. Finally, one applies the definition
of the sentential connective <+ as the operation that assigns the a-pole to
aa and bb and the b-pole to ab and ba (see Figure 1).

b

Figure 1: Wittgenstein’s ab-diagram of p <> p, from CL (p. 57)

The ab-notation implies a crucial structural difference compared with
truth tables. In a truth table, 2" combinations of truth values are consid-
ered based on the n propositional variables of different types that occur in
the propositional formula. By contrast, in an ab-diagram, every combina-
tion of poles is considered, regardless of whether the propositional variables
are identical. Whereas truth tables are ‘type-based’, the construction of ab-
diagrams is ‘token-based’. This allows a pole to be connected to opposite
poles of the same propositional variable in an ab-diagram. From this, it fol-
lows that tautologies are not identified by the non-existence of an outermost
b-pole in an ab-diagram, whereas in truth tables, tautologies are identified
by the fact that the truth value F' does not occur below the main senten-
tial connective. Instead, ab-diagrams identify tautologies by the fact that
the outermost b-pole is assigned to at least one pair of opposite innermost
poles connected to two occurrences of the same propositional variable in any
case.?! This is the symbolic feature of ab-diagrams that is common to all
tautologies of propositional logic. It is impossible to interpret tautologies as
false because then, a single atomic proposition must be interpreted as both

true and false at the same time.
Wittgenstein applies his general identity criterion for tautologies to the
above ab-diagram of the formula p <> p in CL, letter 32 (p. 60):

[...] it is tautological because b is connected only with those pairs
of poles that consist of opposite poles of a single proposition (namely

p)-
21Cf. CL, letter 30 (p. 53).




Therefore, the identification of tautologies is traced back to the relations
between the outermost b-pole and the innermost poles. A ‘complex pole of
propositional logic’ is composed of a propositional variable and one inner-
most pole, e.g., a — p or b — p.22 Thus, in general, the identification of the
truth conditions for formulas is traced back to the relations between the
outermost poles and classes of complex poles. Opposite complex poles of
propositional logic are complex poles with identical propositional variables
but opposite poles. For example, a —p and b— p are opposite complex poles,
whereas a — p and b— ¢ are not opposite. The fact that the outermost pole of
an ab-diagram might be connected to opposite complex poles represents the
crucial difference between ab-diagrams and truth tables. As will be shown
in section 4, this point is crucial for the application of the ab-notation to
predicate logic. Ignoring this difference, or even maintaining that the rules
of the ab-notation should be adjusted to comply with the method of truth
tables in this respect, as suggested by Black (1964, pp. 323-324), makes it
impossible to understand the ab-notation and its prospects as a notation for
FOL.

3.2 ab-Symbols

The construction of an ab-diagram and the identification of tautologies and
contradictions by referring to the relations between the outermost and in-
nermost poles do not suffice to identify equivalent formulas by translating
them into one and the same ab-symbol in any case. In the following, I will
describe how to construct a single ab-symbol for all formulas of a class of
equivalent propositional formulas. As we will see, this procedure reflects
the first step of the Quine-McCluskey algorithm for generating minimised
disjunctive normal forms of propositional logic. The results of this proce-
dure are the so-called ‘reductive disjunctive normal forms’ (RDNFs), which
are known to be unique representatives of equivalent classes of propositional
logic. To achieve a similar result within the ab-notation, two steps are
needed: (i) an equivalent to the representation of canonical disjunctive nor-
mal forms (CDNFs) and (ii) an equivalent to the first step in the process of
minimising CDNFs within the Quine-McCluskey algorithm. As we will see,
Wittgenstein’s remarks envisage (i) but not (ii).

To represent ab-symbols without reproducing insignificant properties of
ab-diagrams, Wittgenstein describes a method of simplifying ab-diagrams

221 the notation of complex poles, a- as well as b-poles are always assigned to the left
of propositional variables, cf. p. 11 below.
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that results in single ‘pole-groups’ (NL, p. 102[4]), or ‘classes of poles’ (CL,
letter 30):

In place of every proposition p, let us write Z p. Let every correla-
tion of propositions to each other [...] be effected by a correlation of
their poles a and b. Let this correlation be transitive. Then accord-
ingly Z:Z p is the same symbol as Z p. Let n propositions be given. I
then call a ‘class of poles’ of these propositions every class of n mem-
bers, of which each is a pole of one of the n propositions, so that one
member corresponds to each proposition. I then correlate with each
class of poles one of two poles (a and b). The sense of the symbolising
fact thus constructed I cannot define, but I know it.

This simplified notation abstains from the cumbersome use of curly
brackets, and it does not contain any intermediary poles.?3 Instead, it
makes use only of innermost poles, which are connected to propositional
variables, and of outermost poles, which are connected to pole-groups. 1
call the notation that assigns outermost poles to classes of complex poles,
or pole-groups, the ‘pole-group notation’. Because of the simplicity of the
pole-group notation, propositional variables are always provided with poles
on their left-hand sides. Therefore, the two ab-diagrams a — p — b and
a—b—a—p—>b—a—b are represented by the same pole-groups, a — {a — p}
and b — {b — p}. In this case, the set of those pole-groups is already the
ab-symbol. However, this is not the case in general.

Figure 2: ab-diagram of —p V —q

As a first step in moving from ab-diagrams to ab-symbols, ab-diagrams
are converted into ab-pole-groups. To do this, each a-pole-group is obtained

Z3Cf. also NL (p. 104[4]), MN (p. 114[7]), and CL (p. 48), point (4), for Wittgenstein’s
‘transitivity rule for poles’, which allows the deletion of all intermediary poles.
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as the result for one of the paths from the outermost a-pole to complex poles.
The same applies in the case of the b-pole-groups. For example, Figure 2
shows the ab-diagram of the formula

—pV g, (1)
which results in the following a- and b-pole groups:

a— {CL—p, b—Q},

a_{b_pa G_Q},

a— {b—p7 b—Q},

b—{a—p, a—q}
Table 1: Pole-groups of —p V —¢

a-pole-groups represent conditions for truth, whereas b-pole-groups rep-
resent conditions for falsehood. a-pole-groups can easily be converted into
a disjunctive normal form (DNF) that is equivalent to the initial formula,
whereas b-pole-groups are plain representations of a DNF that is equivalent
to the negation of the initial formula. In fact, instead of being generated
from the rather cumbersome ab-diagrams, pole-groups can be generated di-
rectly from an initial formula and its negation through the translation of a
rather complex sort of DNF, which I abbreviate ‘CCDNF’. For simplicity,
we abstain from using any dyadic sentential connectives other than A and
V in the following. Then, CCDNFs corresponding to pole-groups can be
generated via the following simple procedure:

CCDNTF rules:

1. Convert the resulting formula into a negative normal form (NNF) by
eliminating double negation and applying De Morgan’s laws.

2. Apply the definition of V, i.e., AVB 4+ AANBVAA-BV—-AAB, to
all occurrences of V.

3. Apply the distributive law AV (BAC) 4+ AA BV AAC to obtain a
CCDNF.

The CCDNF of formula (1), for example, is

pA—gV - pAgV-pA g, (2)

12



whereas the CCDNF of (1) is

pAg. (3)

These CCDNFs can easily be mapped to the pole-groups of table 1.
In general, the resulting CCDNF of an initial formula ¢ can be mapped
to the a-pole-groups through a one-to-one mapping of each disjunct of the
CCDNF to an a-pole-group. The same applies to the CCDNF of —¢ and
the b-pole-groups.

To obtain CDNFs from CCDNFs, one must delete all disjuncts that con-
tain both a propositional variable A that is not negated and its negation —A.
If no disjunct remains after this deletion, then the initial formula is a con-
tradiction, and consequently, its negation is a tautology. This corresponds
to Wittgenstein’s rule for identifying tautologies based on ab-diagrams in
relation to the connections between the outermost poles and opposite com-
plex poles. I call pole-groups that contain opposite complex poles ‘contrary
pole-groups’. When an initial formula is identified as a tautology or con-
tradiction, the construction of the ab-symbol immediately terminates. In
this case, the ab-symbol consists of empty pole-groups for one pole and ‘to-
tal’ pole-groups for the other. In accordance with Wittgenstein’s metaphor
by which a tautology ‘leav(es] the whole of logical space open to reality’,
whereas a contradiction ‘leaves no point of it to reality’ (TLP 4.463), one
might symbolise tautologies by a — {0} and b — {l} and contradictions by
the opposite. This symbolisation shows that tautologies and contradictions
do not depend on any specific proposition.

To obtain CDNFs and their respective pole-groups in the case that the
initial formula is neither a tautology nor a contradiction, one must ulti-
mately delete identical disjuncts (pole-groups) and identical conjuncts (com-
plex poles), leaving only one occurrence in each case. Let us call the pole-
groups corresponding to CDNF's ‘canonical pole-groups’. The isomorphism
of Wittgenstein’s ab-notation, and pole-groups in particular, to DNFs is a
further crucial difference with respect to Peirce’s a-graphs, which are iso-
morphic to formulas that contain only — and A.

The translation procedure into canonical pole-groups described thus far
suffices to assign to formulas (1) and (2) the same pole-groups listed in table
1. However, consider the case of p and p A ¢V p A =q: These two formulas
are also equivalent, but their CDNF's and the corresponding canonical pole-
groups are not identical:

a—{a—p},
b—{b—p}.

13



Table 2: Canonical pole-groups of p

a—{a—p,a—q},
a_{a—p,b—Q},
b_{b_paa_Q}v
b—{b—p,b—q}.

Table 3: Canonical pole-groups of p A gV p A ¢

Wittgenstein’s remarks on the ab-notation do not offer any hints re-
garding how to proceed in this case. However, the aim of Wittgenstein’s
iconic proof procedure can easily be achieved if one implements the so-called
merging process of the Quine-McCluskey algorithm to obtain RDNFs from
CDNFs. This process is based on the following so-called ‘merging rule’:

AN NAZANBY AN NAN-B A ArA L AN A, (M-R).

In the Quine-McCluskey algorithm, disjuncts are represented as lists
of sets, just like pole-groups. Thus, the algorithm is directly applicable
to pole-groups with identical outermost poles. The algorithm iteratively
applies M-R to sets of identical length. If M-R is applicable, then the new
term is placed in a new list. Pairs of compared terms must be marked, but
unpaired terms can be used for further applications of M-R until this rule
can no longer be further applied to the terms in a list. Identical terms must
be written down only once in the new list. All terms that are not marked
to indicate that M-R is no longer applicable to them are the elements of the
resulting RDNF or, correspondingly, the resulting reductive pole-groups.
When applied to the pole-groups in table 3, this procedure results in the list
given in table 2.

The Quine-McCluskey algorithm goes on to minimise RDNFs. However,
as is well known, this algorithm does not result in unique solutions. The
RDNF given in (4) below, for example, can be reduced to either (5) or (6),
which are both equivalent to and shorter than (4):

PA-QV-PAQVPARVQAR, (4)
PA-QV-PAQVPAR, (5)
PA-QV-PAQVQAR. (6)

Thus, this minimisation step does not constitute part of an iconic proof
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procedure. However, an algorithm that generates CDNF's (or CCDNF's and
then CDNF's) from a given propositional formula and then reduces the CD-
NFs to RDNFs satisfies the claim that all formulas of a class of equivalent
propositional formulas can be translated into one and the same RDNF. The
same applies to an algorithm that starts by generating ab-diagrams and then
converts those diagrams into canonical pole-groups and, finally, into reduc-
tive pole-groups. The resulting reductive pole-groups are the ab-symbols of
the initial formulas. The conditions for truth and falsehood can be directly
read off from the ab-symbols by translating a-pole-groups as conditions for
truth and b-pole-groups as conditions for falsehood.

4 Elementary FOL

This section describes how to construct a single ab-symbol for all formulas
of a class of equivalent elementary FOL formulas.

4.1 ab-Diagrams

There is only one passage in Wittgenstein’s known early writings that con-
cerns the ab-notation of predicate logic, from NL (pp. 95f.):%4

The application of the ab-notation to apparent—variable proposi-
tions becomes clear if we consider that, for instance, the proposition
‘for all x, px’ is to be true when ¢z is true for all 2’s and false when px
is false for some x’s. We see that some and all occur simultaneously
in the proper apparent variable notation.

The notation is:
for Vxpzx : a — Vo — apxrb — dr — b and
for Jzpx : a — Iz — apxb —Vr —b

Old definitions now become tautologous.

Wittgenstein derives his ab-notation for the two most primitive quantifier-
containing formulas from a standardised paraphrasing of the truth and false-
hood conditions of their instances. The ab-notation is designed to identify
the truth and falsehood conditions of propositions based on symbolic prop-
erties. Therefore, it turns out that both quantifiers constitute an irreducible
part of a proper notation. This constitutes a significant difference with re-
spect to truth tables and to any attempt to reduce FOL to propositional
logic. It is also a significant difference with respect to Peirce’s S-graphs.

241 tacitly replace Wittgenstein’s Russellian notation for quantifiers with modern nota-
tion; i.e., I write Vz instead of (z) and 3z instead of (3z).
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The purpose of the ab-notation is to identify the logical properties of
any formula of a certain realm based on symbolic criteria. Axioms and
definitions (or equivalence rules) must therefore be identified as tautologies
in the ab-notation. This is Wittgenstein’s meaning in the last sentence of the
quotation. By the term ‘old definitions’, he refers to quantifier definitions
such as those stated in propositions x9.01 — 9.08 of Principia Mathematica.
These definitions define expressions with sentential connectives outside the
scope of quantifiers by means of prenex normal forms.?® The first definition
is as follows:

x9.01 —Vaxpr = Jz—px Df.

Wittgenstein claims that his ab-notation makes it possible to prove such a
definition. Therefore, any general rule for identifying tautologies in the ab-
notation must apply to =Vzyx < Jrx—pzx, and any transformation of —Vaxpz
and Jz—px must result in identical ab-symbols.

To construct ab-diagrams of elementary FOL, one must translate an FOL
formula ¢ from inside to outside in accordance with the logical hierarchy of ¢.
In elementary FOL, quantifiers must be considered in addition to sentential
connectives.

ab-Diagrams:

1. Provide tokens of the propositional functions of ¢ with an innermost a-
pole to the left and an innermost b-pole to the right, e.g., A = a—A—b.

2. (a) Assign the quantifier of the formula ¢ plus its variable to the a-
pole of the appropriate part of the ab-diagram under construction.
(b) Assign the a-pole to this quantifier.

(¢) Proceed similarly for the b-pole of the appropriate part of the ab-
diagram by assigning to it the opposite quantifier, supplemented

%5 Russell 1910, p. 136 (here, as in the quotation from *9.01, I tacitly replace the
Russellian notation for quantifiers with modern notation):

In virtue of these definitions, the true scope of an apparent variable
is always the whole of the asserted proposition in which it occurs, even
when, typographically, its scope appears to be only part of the asserted
proposition. Thus when Jx¢z or Vxor appears as part of an asserted
proposition, it does not really occur, since the scope of the apparent
variable really extends to the whole asserted proposition.

By contrast, Wittgenstein’s conception of logic gives priority to anti-prenex normal forms;
cf. Lampert 2017.
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with an outward b-pole, e.g.,

VeA(x) = a—-Vr—a—Alx) —b—Fz—b

3. Translate the sentential connectives in accordance with their defini-
tions as ab-operations (see p. 8 above), e.g.,

AAB= a-Ab a-B-b

For an example implying dyadic sentential connectives and, consequently,
curly brackets, see Figure 4 on p. 28.

Applying the above rule results in, e.g., Wittgenstein’s previously quoted
ab-diagrams for Vzer and Jzez. In the cases of -Vzpxr and Jr—px, one
obtains b—a—Vr—a—pxr—b—dr—b—aand b—Vr—b—a—pxr—b—a—dxr—a.
These two diagrams are identical symbols, which becomes clear from the fact
that the positions of neither the quantifiers nor the intermediary poles are
part of the ab-symbol. All that matters is the relations of the outward poles
and the quantifiers to the inward poles of the propositional functions. In
this respect, the two ab-diagrams do not differ from each other.

To apply Wittgenstein’s rule for identifying tautologies, one must gen-
eralise the notion of ‘opposite complex poles’ (see p. 10 above). Clearly, it
is not sufficient to refer to opposite (single) poles of identical propositional
functions because JxF'x and dx—Fz are not contradictory. Instead, quanti-
fiers must be part of complex poles. From this, it follows that the internal
relations between complex poles in elementary FOL must be identified in
addition to the trivial internal relations of identity and contradiction that
are considered in propositional logic, e.g., a — p being identical to a — p and
a—p being contradictory to b—p. Therefore, the identification of the logical
properties of formulas in elementary FOL essentially reduces to the identifi-
cation of the internal relations between complex poles involving quantifiers.
This is why the rules for constructing ab-diagrams must not involve internal
relations between complex poles, as would be the case if those rules were
type-based (instead of token-based, see p. 9 above), as they are in the case
of truth tables or CDNFs. I will elucidate this point in the next section
by explaining how to identify ab-symbols given ab-diagrams in elementary
FOL; see section 4.2.2 in particular.
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4.2 ab-Symbols
4.2.1 Pole-groups

To specify how to convert ab-diagrams into pole-groups in elementary FOL,
let us define a ‘path’ as a concatenation of poles and quantifiers leading, via
curly brackets and intermediate poles, from an outermost pole of the ab-
diagram to the innermost poles of the propositional functions. These paths
branch if a pole is connected to pairs of poles by several brackets. Each path
runs over a single such branch. Quantifiers occur only inside brackets in the
ab-diagrams of elementary FOL. Therefore, the paths no longer branch after
having reached quantifiers. In contrast to the complex poles of propositional
logic, the complex poles of elementary FOL contain quantifiers in addition to
innermost poles and propositional functions. FEach pole-group is generated
from a single path leading from an outermost pole to complex poles. The
a-pole-groups are obtained from the paths starting at the outermost a-pole;
the b-pole-groups are obtained from the paths starting at the outermost b-
pole. All intermediary poles along these paths are to be eliminated, after
which the outermost pole plus the complex poles will remain for each path.
A path without its intermediary poles is called an ‘elementary path’. A
pole-group corresponds to each elementary path. This procedure is based
on Wittgenstein’s rule of transitivity (see p. 11 above).

Pole-groups: To convert an ab-diagram into pole-groups, generate all el-
ementary paths. Each elementary path starting with the a-pole cor-
responds to an a-pole-group; each elementary path starting with the
b-pole corresponds to a b-pole-group.

Converting ab-diagrams into pole-groups leads to identical pole-groups
in the case of the two ab-diagrams b —a — Vo —a — px —b—dz — b —a and
b—Vr—b—a—9xr—b—a—3r—a (seep. 16 above):

a—{3x —b— pz},
b—A{Vx —a— pz}.

However, not all equivalent formulas are assigned to identical pole-groups.
In moving from pole-groups to ab-symbols, the first step concerns the single
complex poles of elementary FOL (‘elementary complex poles’ for brevity).
In contrast to propositional logic, equivalent but not identical elementary
complex poles exist in elementary FOL, e.g., 3 —a — Fx and Jy —a — Fy.
These equivalences are due to the renaming of variables (variable defini-
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tions). To identify these equivalences from their identical properties in the
ab-notation, one must consider that the specific types of the variables do not
contribute to the meaning of a quantified proposition. Instead, ‘they serve
merely to indicate cross-references to various positions of quantification’
(Quine, (1983, p. 70)). To indicate this, I use a notation similar to Peirce’s
‘lines of identity’ or Quine’s ‘bonds’ that connect positions of propositional
functions that are assigned to quantifiers. Thus, e.g., the complex poles
Jx —a— Fzx and Jdy — a — Fyy are both translated into 3 < ; a — F1y. For
convenience, I do not directly relate lines to positions as Peirce and Quine
do; rather, I indicate positions by numbers and connect those numbers with
lines. I call lines that connect positions ‘forks’. I call the resulting complex
poles ‘symbolising complex poles’, or ‘complex poles’ or ‘symbolising poles’
for brevity. Each is composed of a ‘prefix’ (i.e., a sequence of names and
quantifiers + forks connecting numbers) and a ‘suffix’ (i.e., an innermost
pole + a propositional function). Similar to Wittgenstein’s suggestion in
an NB entry from December 2nd, 1916, names are treated like quantifiers
and head the prefix. Unlike for variables, the specific types of these names
matter. Hence, positions are connected to names as they are to quantifiers.
Symbolising poles are generated from elementary poles in the following way:

Symbolising complex poles:

1. Replace the variables that are bound by quantifiers with the numbers
representing their positions in the propositional function. If a variable
occurs more than once in the propositional function, then connect the
corresponding numbers with a ‘fork’, e.g. translate the bound variable
z into <3.

2. If names occur, then prefix them to the complex pole in alphabetical
order and assign to each name the number corresponding to its position
in the propositional function. If a name occurs more than once in the
propositional function, then connect the corresponding numbers with
a fork, e.g., translate a — F'cc into ¢ <§a — Fis.

3. Replace each variable and name in the propositional function with the
number corresponding to its position in the propositional function,
e.g., replace Fxxy with Fjo3.

4. To indicate that the order of the names, existential quantifiers, or uni-
versal quantifiers in each corresponding sequence thereof is insignifi-
cant, all names, existential quantifiers, and universal quantifiers are
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separated by commas within those sequences. For the same reason,
the preceding sequence of names is separated by a comma from the
following sequence of quantifiers.

Therefore, the elementary complex pole
JaVy — a — Faxyced

is written as
4 1
¢ <5,dg,d <3 V3 — a — F123456,

which is paraphrased as follows: ‘The object ¢ in the fourth position and
the fifth position combined with the object d in the sixth position combined
with some object, the same in the first position and the second position,
combined with all objects in the third position makes the 6-adic function F'
true’. For another example that illustrates how to yield pole-groups with
symbolising poles from the ab-diagram depicted in Figure 4, see p. 29.

To generate ab-symbols from pole-groups that contain symbolising com-
plex poles, only those complex poles that contribute to an unambiguous
representation of the conditions for truth and falsehood within the specified
groups of symbolising poles must be identified. All other complex poles,
although they are ‘symbolising’ if paraphrased on their own, do not ‘sym-
bolise’ in the pole-groups in which they occur; they are not part of the
ab-symbol because they are not necessary for unambiguously identifying the
conditions for truth and falsehood. For example, it is obvious that both of
two identical symbolising complex poles do not symbolise within a single
pole-group. In general, an unambiguous minimisation procedure is needed
to eliminate any symbolising complex poles that do not symbolise in the
specific contexts of their occurrence in pole-groups. In propositional logic,
this is essentially the counterpart to the first step of the Quine-McCluskey
algorithm for deriving RDNFs. Before defining a similar procedure for ele-
mentary FOL, a general rule for identifying the internal relations between
complex poles of elementary FOL must be defined.

4.2.2 Internal Relations between Complex Poles

In propositional logic, the only internal relation that can exist between two
different complex poles is a relation of contradiction. This relation can be
trivially identified: The same propositional variable is prefixed by ‘opposite’
poles. In the case of symbolising complex poles, contradictory complex
poles are identified in a similar but slightly generalised way. Because the
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prefix also contains quantifiers, one must exchange existential and universal
quantifiers to generate the corresponding ‘opposite prefix’. Therefore, e.g.,
the opposite (contradictory) complex pole of ¢ <2, dg, 3 <3 V3 — a — Fi23456
isc <§, dg,V <% d3 — b — F123456.

However, in addition to contradiction relations, relations of implication
as well as subcontrary and contrary relations can exist between elementary
complex poles. Subcontrary and contrary relations can be defined in terms of
implication and contradiction: A and B are subcontrary iff the contradiction
of A implies B; A and B are contrary iff B implies the contradiction of
A. Thus, it is sufficient to determine only the relations of implication in
addition to the relation of contradiction. In elementary FOL, this task can
be reduced to defining the relations between the prefixes of complex poles
because poles with different suffixes cannot be related by logical implication.
Table 4 defines a correct and complete calculus for identifying the relations
of implication between elementary complex poles with identical suffixes. p
and v represent forks connecting numbers; as a limiting case a fork may

have one peak only. << is identical to < a.s.f. for more complex iterations
of forks.

NEz: Juvv = Yv3au
VE: Vuttu ar: t<Pktp, v
<Il: Vp,WwkV<t | <El: 3<¥+3p I
<I2: Jpvwk3I<lh | <E20 V<V EVYudy

Table 4: Rules of implication

The rules of table 4 specify only minimal differences between otherwise
identical elementary complex poles. Their correctness can easily be veri-
fied by translating these rules into ordinary notation. Alternatively, their
paraphrasing is clear and may suffice. Their completeness can be verified
by enumerating all remaining possible minimal symbolic variations and ar-
guing, using either a paraphrase or model theory, that the corresponding
transitions are not truth-preserving. A calculus based on ‘minimal syntactic
differences’ between symbols of a proper notation that allows one to decide
upon relations of implication may be regarded as a typical feature of an
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iconic proof procedure. Table 5 lists a set of rules that is sufficient to con-
stitute the minimal symbolic variations to rule out relations of implication
(= rules of implication). s and ¢ are variables of different names.

_ a — h—
T oy A
b—plFa—yp
VdFEx: Yudv tf vV
tI: st tu JE: dptu

<FEl V<BWsutv| <Il: sptviF3<*h
<E2 V<UBFIuWw | <120 Vpdvl I < b

Table 5: Rules of implication

There is no need for, e.g., a rule of implication that states that du I/ Vu
because of the following principle: If the transition from a symbolising prop-
erty X to a symbolising property Y is not justified, then the transition from
X to a symbolising property Y*, from which Y can be derived by applying
one of the rules of implication, is, a fortiori, also not justified. I call this
principle the ‘strengthening of the consequent’ (SC). In a similar manner,
an additional principle of the ‘weakening of the antecedent’ (WA) must be
presumed for a complete classification of minimal symbolic differences and
their distinction in truth-preserving and non-truth-preserving transitions.

Whether a relation of implication exists between two complex poles can
be determined either by constructing complete implication trees (see Figure
3) or by means of an efficient decision rule that prescribes how to pass
from one pole to another using the rules of implication, if possible, or a
rule of implication, if necessary (see EXAMPLE 1 and EXAMPLE 2 below).
These scanty remarks in combination with their exemplification must suffice
in this outline of Wittgenstein’s ab-notation.

ExXAMPLE 1:

8 6 2
t1,3 < V4, V53 < 2V < 3 —a — Flasasers0
l_

4 1
t3,V < ;3 < 5,36, 37,38, Jo — a — Fiasa56789
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Figure 3: Implication tree for prefixes of length 2 with 2 names
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No. Pole Rule
1. t1,3 < §V4,¥53 < SV < 2 —a— Fiogaserse | A

2. t17EI<SV<§3<$V<§—G—F123456789 <Il
3. t<2,3< V< t3< 8 —a— Frasaserse VE
4. t<2,3< 5V < 336,37 — a— Fiasuserso < El
5. t<é,38,39V< g36;37_a_F123456789 < El
6. t3,3 < 3,35,V < g36737_a_F123456789 =1

7. t3,¥ < 23< 5,36,37,38,39 — a — Flosasersy | IVEx

EXAMPLE 2:

V53V < 5 —b— Frogas F/ V13aVs3 < ; —b— Flogs

No. Pole Rule
: J4V533V < ; —b—Flazas | A

2. 34V53 <é — b — Fliass5 <12

3. ty, Vs3I < g —b— Fiog45 | 3F

The proof terminates on line 3 with the first necessary application of a
rule of implication. This application is necessary because to proceed from
the complex pole in line 2 to V;3,V53 < g — b — Fia345, a transition from 3y
to Vi is necessary. However, such a transition is invalid because of 3E and

(SQ).

4.2.3 Minimisation

Given the pole-groups with symbolising poles (= symbolising pole-groups),
the next step in the process of generating the ab-symbol is to generate
‘canonical’ symbolising pole-groups. This is a first stage of minimisation
similar to the generation of canonical pole-groups within propositional logic
(see p. 13 above). The only difference with respect to propositional logic is
that a ‘contrary pole-group’ is now defined more generally as a pole-group
that contains at least two contrary complex poles. According to the defini-
tions given in the previous section, whether two complex poles are contrary
is decidable. Thus, canonical pole-groups within elementary FOL can be
obtained by applying the following rules:

Canonical symbolising pole-groups:
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1. Eliminate all contrary pole-groups of complex poles.
2. List each pole of a pole-group only once.

3. List each pole-group only once.

The application of these rules is illustrated on p. 29 to 31. These rules mirror
the procedure for generating a CDNF from a CCDNF in propositional logic.
CCDNFs within elementary FOL are generated by the CCDNF rules defined
on p. 12, of which the first rule must additionally make use of quantifier
definitions to achieve NNFs within elementary FOL.

The first rule for generating canonical symbolising pole-groups already
suffices to determine whether an initial formula of elementary FOL is a tau-
tology: it is a tautology iff no b-pole-group remains after rule 1 is applied.
Similarly, the initial formula is a contradiction iff no a-pole-group remains.
This is so because each single pole-group corresponds to a disjunct of a cor-
responding DNF of elementary FOL, which is contradictory iff each disjunct
contains at least two conjuncts that are contrary.

The second stage in the minimisation process for generating ab-symbols
from pole-groups is a generalisation of the merging rule applied in the first
step of the Quine-McCluskey algorithm. This merging rule can be gen-
eralised as follows to consider the internal relations of complex poles of
elementary FOL:

MR: If a pole-group PG1 contains a complex pole Al, another pole-group
PG2 with the same outermost pole contains a complex pole A2, A1 and
A2 are subcontrary, and all other complex poles of PG2 are implied
by some complex pole of PG1, then eliminate A1 from PG1.

This can be justified by (i) translating the rule into ordinary notation, (ii)
converting the corresponding disjunction into a conjunctive normal form
(CNF), (iii) minimising this CNF expression by applying tautology elim-
ination and the counterparts to rules IR1 and IR2 below, (iv) converting
the result back into a disjunction of conjunctions, and (v) minimising the
resulting DNF by again applying the counterparts to IR1 and IR2.

Unlike in propositional logic, complex poles of elementary FOL may be
related through logical implication. Therefore, two further rules, in addition
to MR, are needed to generate unambiguous representatives of classes of
equivalent elementary FOL formulas.

Rule of implication 1 (IR1): If a pole-group PG contains two complex
poles, Al and A2, such that Al implies A2, eliminate A2.
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Rule of implication 2 (IR2): If each complex pole of a pole-group PG1
is implied by some complex pole of another pole-group PG2 with the
same outermost pole, eliminate PG2.

Again, these rules are evident if one considers their translations into ordinary
notation.

To guarantee that MR is applied to the maximal extent, (i) the process
of merging must precede the process of minimising the pole-groups in accor-
dance with IR1 and (ii) no pole-groups can be eliminated during merging.
This ensures the availability of the maximum number of pole-groups that
can induce the minimisation of a pole-group due to MR. To avoid repeated
application of MR to the same pair of pole-groups, the pairs of pole-groups
to which MR has already been applied must be marked. This is also similar
to the Quine-McCluskey algorithm. These considerations result in the fol-
lowing rules for stage 2 of the minimisation process starting from canonical
pole-groups:

ab-symbol:

1. Apply IR2 to the maximal extent.

2. If MR is applicable, apply MR to the maximal extent to add the new
minimised pole-groups to the existing pole-groups and return to step
1; otherwise, go to step 3.

3. Apply IR1 to the maximal extent. Finally, apply IR2 to the result
once more.

The resulting pole-groups constitute the ab-symbol.

As it does in the case of RDNFs in propositional logic, this procedure
leads to unambiguous representations for all formulas of a class of equivalent
formulas in elementary FOL. This is evident from the fact that the result
represents the mazimum of the different minimal conditions for truth and
falsehood for instances of the initial formula.

In this sense, the resulting ab-symbol identifies the logical form of the
initial formula. This form can be directly read from the ab-symbol by para-
phrasing the symbolising properties of the ab-symbol in accordance with a
mechanical reading algorithm.

Reading Algorithm: Paraphrase the resulting ab-symbol of a formula ¢
from the outside to the inside according to the following rules:
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1. Start by paraphrasing the a-pole-groups using the phrase ‘An instance
of the formula ¢ is true iff” and the b-pole-groups using the phrase ‘An
instance of the formula ¢ is false iff’. Connect the paraphrases of the
a- and b-pole-groups with ‘and’.

2. Connect the paraphrases of pole-groups with identical outmost pole
with ‘or’ and the paraphrases of complex poles with ‘and’.

3. Paraphrase the complex poles from the outside to the inside as follows:

(a) Jis paraphrased as ‘some object’, V is paraphrased as ‘all objects’,
and a name t is paraphrased as ‘the object ¢ .

(b) Each fork that succeeds a quantifier is paraphrased as ‘the same’.

(c) Each number k subsequent to a fork is paraphrased as ‘in the kth
position’, and these paraphrases are connected with ‘and’.

(d) Connect the paraphrases of names, quantifiers plus subsequent
forks and numbers with ‘combined with’.

(e) Paraphrase a — A; ., as ‘makes the n-adic propositional function
A true’ and b— A;._,, as ‘makes the n-adic propositional function
A false’. In the case of a propositional variable, paraphrase a — A
as ‘A is true’ and b — A as ‘A is false’.

For an example of the paraphrase of the complex pole ¢ <§,d6, 3 <dvs—
a — Fia3456, see p. 20 above, and for the paraphrase of an ab-symbol, see p.
32 below.

These rules show that the conditions for truth and falsehood in elemen-
tary FOL are functions of complex poles. These complex poles are, in a
sense, the atomic constituents of elementary FOL. The resulting ab-symbols
also make it possible to identify logical relations between formulas by apply-
ing the calculus to identify internal relations between symbolising complex
poles (see section 4.2.2) in combination with simple rules regarding the addi-
tion and elimination of complex poles and pole-groups. Thus, the procedure
satisfies the aim of serving as an iconic proof procedure that translates for-
mulas expressed in a deficient notation into ideal symbols that allow one to
identify logical properties and relations from the properties of those symbols.
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5 Example

The following example illustrates the process of generating the ab-symbol of

an ordinary formula.

We start with the following formula:

VzIyVae Feyz AVeIyFayx ANVeVyFaxy V JxFrax.

Figure 4 presents the ab-diagram.

"

a

N

N N
N

Figure 4: ab-diagram

(7)

The ab-diagram in Figure 4 can be translated into the following symbol-

ising pole-groups:

1 a — {V33Vi —a — Fia3,
2 a — {V33Vi —a — Fia3,
3. a —{V33V1 —a — Fia3,
4. a—{V3hVi —a— Fias,
5. a—{33¥e3) — b— Fias,
6. b {Vs3V1 —a— Flas,

V<13 —a— Fias,
V< éEQ*Q*Flzg,
V< 330 —a— Fios,
< Vo —b— Flag,
V< éag—a—F]_Qg,
V< i3y —a— Fias,
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V< 3,Y5—a— Fios,
V< ;,ngafFu&
I< ;,33—6—F123,
V< ;,V3—G_F1237
V< 5,V5—a— Fios,

< 3,33 —b— Fuas,

3<i —a— Fiasl,
V<:—b— Fas},
3 <2 —a— Frasl,
3 <§ —a— Fias},
3 <2 —a— Frasl,
V<t —b— Fas},



10.
11.
12.
13.
14.
15.
16.

b—{V33V1 —a— Fias,
a—{V33V1 —a — Fias,
b— {3323 — b — Fias,
a — {33231 — b — Fia3,
a —{33¥231 — b — Fia3,
b—{V33V1 —a— Fias,
b—{FV231 — b~ Flias,
b—{FVa31 — b~ Fias,
a — {33231 — b — Fia3,
b— {3323 — b — Fias,

< iV —b— Fio,
< 3Va—b— Fios,
V<13 —a— Fias,
V< :1332*0,*]‘7123,
< 3V —b— Flo,
< 3V —b— Fa,
V< 33o—a— Fios,
< iV —b— Fias,
< JVa—b— Fios,
< 1Va —b— Fios,

V<;7V3—CL—F123, V<é—b—F123}»
< 3,33 —b—Fia3, 3<:—a— Fas},
V<l Vs—a—Fi, V<i—b-— Fia},
3< 1,33 -b—Fia3, 3<i—a— Fiag},
V< 1,V3—a—Fio, 3<i—a-— Fiagl,
3<§733—5—F123, V <3 —b— Fia},
3< 5,33—b—Fias, VY <2—b— Fias},
V<;,V3—CL—F123, V<§—b—F123},
3< 1,33 —b—Fia, 3<i-—a— Fias},
3< 1,33 —b—Fra, V<i—b— Fia)}.

Table 8: Symbolising complex poles of formula (7)

Figure 5 presents the relations of implication between the complex poles
and the innermost a-pole. Figure 6 presents the relations of implication
between the complex poles and the innermost b-pole.

V<V, —a—F

Vs

FYma-Fpy

<I1,<E2

3VEx<I1

V<l F3a-Fy

<I1,VE,3I

3< 2y —a—Fpy

Figure 5: Relations of implication between symbolising poles
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3<,V,-b—Fy V<l —b—Fpy

<E1, 3VEx <I2,<El
VE,3L<E1

4

3,v,3-b-F,,

372

3<,3,-b-F,,

Figure 6: Relations of implication between symbolising poles

According to the definitions of contradictory and contrary poles, con-
trary poles can be identified by referring to relations of implication between
symbolising poles (see Table 9). The first four pairs of poles in the table are
contradictory and thus are not only contrary but also subcontrary.

V3doV1 — a — Fio3 d—p>  d3Vodi — b — Fio3
V<iBh—a—Fas <> 3<iVo—b— Fio
V<l Vs—a—Fpg <—> 3<),33—b— Fia
3<§*G*F123 4= V<é*b*F123
V33V —a—Fla3  <—> 3 < iVa—b— Fiay
V< lVs—a—Fs <a—> I<iVo—b— Fio
V<§,Vs—a—Fas a—> V<2 —b— Figs.
Table 9: Contrary pairs of poles

Therefore, lines 2, 4, 7-9, 11, 12, and 14 contain contrary poles. In
accordance with the rules for generating canonical pole-groups, the pole-
groups corresponding to these lines are deleted. Consequently, the following
canonical pole-groups remain:

1. a—{V33V) —a— Fias, V<?1,32*G*F123, V< 1,V3—a—Fias, 3<i—a-— Fiagl,
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10.
15.

13.
16.

a—{V33V1 —a— Fias,
a — {33231 — b — Fia3,
a—{33¥231 — b — Flias,
a— {33V231 —b— Fias,

vV <
V<
V<
i<

332 —a— Fuas,
232 —a— Fias,
332 —a— Fuas,
Vo —b— Fias,

< 5,33 —b— Fias,
V< 3,Y5—a— Fios,
< 5,33 —b— Fuas,
< 2,35 —b— Fias,

Table 10: Canonical a-pole-groups of formula (7)

b—{V3V| —a— Fia3, V< :1332 —a — Fias,
b— {33Va31 — b — Fiag,
b—{33Ve3y — b — Flas,

V< ;)Elg—a—Flgg,,
d< ;)VQ —b—F123,

3< 1,33 —b— Fias,
1< %733_b_F1235
i< §»33—5—F123,

Table 11: Canonical b-pole-groups of formula (7)

V33oV1 —a — Fio3
V< éaz—a—Flgg

V< ;,Vg,—a—Fng

3<§—a—F123
V< 33 —a— Fiog
V<§E|2—a—F123
3<§—G—F123

O—=<
O—<0
O—<0
O—<
O—<0
O—=<
O—<0

J3Vad1 — b — Fia3
< 3Vo —b— Fiag
J< 1,33 - b— Fias
V<§ —b— Fia3
d3Vod1 — b — Fio3
< 5,33 —b— Fiag
< 3,33 —b— Fiag

Table 12: Subcontrary pairs of poles

<2 —a— Frasl,
<t —a— Fasl,
3 <2 —a— Fasl,
<t —a— Fias},

V<i—b— Fias},
v <§ —b— Fia3},
V<2 —b— Fias}.

The rules for generating the ab-symbol presuppose the identification of
subcontrary poles (see Table 12).

The merging process adds new pole-groups such that the length of each

successively added pole-group is reduced by 1, cf. tables 13 and 14. The
application of IR1 and IR2 presupposes the identification of the relations of
implication between the poles (see Figure 5 and Figure 6).

gk N e

a —{V332V1 — a — Fias,
a —{V332V1 —a — Fia3,
a — {33¥231 — b — Fias,
a—{33Va31 —b— Flias,
a—{F3Va31 — b~ Fias,

vV <
V<
V<
V<
I<
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éVg—b—Flgg, d<

232 —a—Fias, V< },V3—a— Fla3,3 <2 —a— Fias},
230 —a—Fia3, 3< 5,33 —b— Fia3, <t —a— Fias},
2 —a— Fias, V< ),V3—a— Fia3,3 <2 —a— Fias},
330 —a—Faz, 3< ,35—b— Fia3, 3 <2 —a— Fias},
3,33 —b— Fiag, 3 <2 —a— Fias}.



MR: 1/2  a—{V33aVi —a— Fias, V< 330—a— Fla3, 3<2 —a— Fias},
MR.: 1/3 a—{V< i3 —a— Fio3, V< },¥3—a— Fiz3,3 <} —a— Fia3},
MR: 2/4 a—{V< i3—a—Fio, 3< },33—b— Fia3, 3 <} —a— Fias},
MR: 3/4 a—{33¥o31 —b— Fio3, V<13 —a—Fo3, 3<2—a— Fas},
10.MR: 4/5 a—{33¥231 —b— Fia3, 3< 3,33 —b— Fia3, 3<i —a— Fia3}.
11.MR: 6/9 a—{V< 3> —a— Fia3, 3<% —a— Fias},

122MR 8/10 a—{3< J,35—b— Fia3,3 <2 —a — Fia3}.

13.MR: 11/12a — {3 <2 — a — Fia3}.

Table 13: Merging of a-pole-groups

© ® N>

L. b—{V3FV1 —a—Fiag, V< ;32—a—Fi, 3< 5,3 —b— Fa3,V <3 —b— Fis},
2. b—{E|3V25|1 —b—Flgg, V< ;32 —(Z—F123, < %,33 —b—F123,V<§ —b—Flgg},
3. b—{35VoT1 —b— Fra3, 3 < iVa—b—Fia3, 3< 5,33 —b— Fio3,V <2 — b~ Fias}.

4MR:1/2 b—{V< i3 —a—Fra3, I< ), 33— b— Fra3,V <2 — b— Fias},
5.MR: 2/3 b—{33Vo31 —b— Fios, 3< 5,33 b— Fio3,V <2 —b— Fias}.
6.MR.: 4/5b—{3 <}, 33—b— Fio3,V <2 — b— Fias}.
7.IR1: 6 b—{V <} —b— Fia3)}.

Table 14: Merging of b-pole-groups

IR2 deletes all pole-groups except the prime pole-groups a — {3 <é —
a— Fia3} and b— {V <§ —b— Fia3}. Therefore, the ab-symbol of the initial

formula is as follows:

a—{3 <§ —a — Fla3},
b—{V <2 —b— Fias}.
Paraphrase:

An instance of formula (7)

— is true iff some object, the same in the 1st position, the 2nd position
and the 3rd position, makes the 3-adic propositional function F' true,
and

— is false iff all objects, the same in the 1st position, the 2nd position
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and the 3rd position, make the 3-adic propositional function F' false.
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