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Abstract. This paper provides a programmatic overview of a concep-
tion of iconic logic from a Wittgensteinian point of view (WIL for short).
The crucial differences between WIL and a standard version of symbolic
logic (SSL) are identified and discussed. WIL differs from other versions
of logic in that in WIL, logical forms are identified by means of so-called
ideal diagrams. A logical proof consists of an equivalence transformation
of formulas into ideal diagrams, from which logical forms can be read
off directly. Logical forms specify properties that identify sets of mod-
els (conditions of truth) and sets of counter-models (conditions of false-
hood). In this way, WIL allows the sets of models and counter-models to
be described by finite means. Against this background, the question of
the decidability of first-order-logic (FOL) is revisited. In the last section,
WIL is contrasted with Peirce’s iconic logic (PIL).

1 Introduction

This paper outlines an alternative to standard symbolic logic (SSL), namely,
Wittgenstein’s iconic logic (WIL), as a basis for first-order logic (FOL), while
avoiding the algorithmic details.1

I call the outlined approach “Wittgensteinian” for two reasons: (i) it is in-
spired by Wittgenstein’s early philosophy of logic, and (ii) I wish to distinguish it
from Peirce’s conception of an iconic logic (PIL). However, I will not present any
justification demonstrating that the outlined conception of logic is indeed that
of Wittgenstein’s early works, nor will I compare the details of Wittgenstein’s
and Peirce’s approaches. Instead, I will focus on the programmatic ideas and
fundamental concepts of this Wittgensteinian approach to iconic logic (WIL).
In doing so, I intend (i) to make manifest that FOL can be pursued within dif-
ferent paradigms and (ii) to encourage others to work within a Wittgensteinian
paradigm of iconic logic.

? I am grateful to Wulf Rehder for many helpful comments on an earlier draft of this
paper.

1 Algorithms that realize some of Wittgenstein’s ideas concerning logical proofs are
available at the following link:

http://www2.cms.hu-berlin.de/newlogic/webMathematica/Logic/home.jsp.
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I begin by given the rationale behind WIL (section 2). In the main body
of the paper, I explain the conception of proof in WIL and the crucial notion
of ideal diagrams as representations of logical forms (sections 3 to 5). I then
allude to several significant differences that arise when applying WIL and SSL
by addressing the questions of adequate formalization and decidability (sections
6 and 7). Finally, I distinguish WIL from PIL (section 8).

Since the concepts of logical forms and ideal diagrams are crucial, I will define
them here at the outset. Concrete examples and explanations of the concepts
used in these definitions will be given below in sections 2 to 5.

Logical Form: The logical form of a first-order formula φ is the form of the
conditions for truth and falsehood that hold for all formulas that are logically
equivalent to φ.

According to WIL, ideal diagrams represent logical forms unambiguously. Ideal
diagrams are unique representations of equivalence classes of logical formulas. I
define them by using (i) a pole-group notation that Wittgenstein introduced in
his early writings and (ii) minimal disjunctive normal forms of first-order logic
(minimal FOLDNFs). The complete details will be presented in sections 4 and
5.

Ideal Diagram: An ideal diagram is the translation of the set of minimal
FOLDNFs that is generated from an initial formula φ into Wittgenstein’s
pole-group notation.

Paraphrases of ideal diagrams, in turn, are the results of a mechanical reading
algorithm for ideal diagrams. They make use of a standardized informal language
that makes explicit how ideal diagrams should be read as representations of the
conditions for the truth and falsehood of instances of initial formulas.

2 The Case for the WIL Approach

Russell writes the following in [Russell(1992)], p. xvi:

The fundamental characteristic of logic, obviously, is that which is indi-
cated when we say that logical propositions are true in virtue of their form.
[. . .] I confess, however, that I am unable to give any clear account of what is
meant by saying that a proposition is “true in virtue of its form”.

In SSL, “logical propositions” are defined as formulas that are true in all
interpretations. In this sense, SSL places priority on semantics. Accordingly, it
does not make sense to characterize logical propositions as “true in virtue of their
form”. The set of logical propositions is defined not by any specific logical form
shared by all logical propositions but rather by the characteristic of being true
in any interpretation. In the case of FOL, this means that logical propositions
cannot be identified algorithmically by evaluating single interpretations because
the number of possible interpretations is infinite.
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By contrast, WIL can be characterized as a logic that is intended to fulfill
Russell’s desideratum. In general, the primary aim of WIL is to assign logical
forms to equivalence classes of logical formulas. It is important to recognize that
such a conception is reasonable only if one does not rely on either paraphrases
or interpretations based on the structure of the logical formulas whose logical
properties are in question. Such methods of reading or evaluating formulas do
not refer to anything that is common to all formulas in the same set of logically
equivalent formulas and that may thus serve to identify conditions for the truth
or falsehood of propositions sharing the same logical form.

According to [Etchemendy(1999)], there are two ways of understanding the
semantics of a formal language. In the representational view, different models
and counter-models represent different logically possible configurations of the
world. According to this view, “interpretations” are understood as conditions for
the truth value of a sentence. Instances of propositional function variables are
fixed, and their meanings do not change with varying interpretations; only their
truth values do. By contrast, in the interpretational view, different models and
counter-models correspond to the assignment of different actual extensions to
expressions. This conception does not consider “logical possibilities” or “mean-
ing” in terms of conditions for truth and falsehood. The interpretational view
is the standard view of mathematical logic, for example, in Tarski’s semantics.
The representational view, by contrast, is commonly adopted in philosophical
approaches to the semantics of FOL. WIL essentially adopts this view; hence,
referring to models and counter-models is equivalent to referring to conditions
for truth and falsehood in terms of various logically possible states of the world.
According to WIL, the general task of logic is to distinguish conditions for truth
and falsehood within a space of logical possibilities by identifying the logical form
of admissible instances of logical formulas.

In WIL, the logical form of a formula must first be revealed, and it is not
until such a logical form has been identified that one can answer the question of
what such a form contributes to the representation of conditions for truth and
falsehood. As in the case of ordinary propositions, the outer form of a logical
formula disguises its logical form. This is so for the following reasons:

1. Any set of logically equivalent formulas is infinite, and although all of the
equivalent formulas in such a set share the same logical form, they may have
different outer forms. For example, although formulas such as P , P ∨ P ,
P ∨ Q ∧ ¬Q and P ∨ ¬(R ∨ ¬R) differ from each other, instances of these
different formulas share the same conditions for truth and falsehood.

2. Consequently, one cannot paraphrase an arbitrary logical formula such that
(a) the paraphrase clarifies what each sign contributes to the representation

of the conditions for truth and falsehood (i.e., how each part of the
formula specifies certain properties of models or counter-models),

(b) the signs are unambiguously paraphrased to achieve such a clarification
(i.e., identical signs are paraphrased identically and different signs are
paraphrased differently), and

(c) all of the (finite number of) non-redundant paraphrases of the conditions
for truth and falsehood are provided (i.e., all paraphrases that do not
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contain any part that can be eliminated without resulting in a paraphrase
of a different set of models or counter-models).

By contrast, in WIL, one and only one ideal diagram is assigned to all equiva-
lent formulas, and a proper reading algorithm for such ideal diagrams satisfies
conditions 2(a) to 2(c). In doing so, such an algorithm “reads off” the logical
form from an ideal diagram.

WIL qualifies as an “iconic logic” because ideal diagrams identify logical
forms by their syntactic properties. The features of ideal diagrams serve as iden-
tity criteria for sets of (counter-)models that share certain properties. Syntax is
prior to semantics in WIL in the sense that for a given formula, the properties
of models and counter-models are identified prior to and independently of the
evaluation of that formula with respect to single interpretations.

According to WIL, not only the outer form of ordinary language but also the
outer form of logical formulas can lead to (logical, linguistic or philosophical) mis-
understandings. WIL avoids such misunderstandings by revealing logical forms
through equivalence transformation. Such a procedure elucidates our implicit
understanding of the construction of logical formulas and what it contributes to
specifying conditions for the truth and falsehood of propositions.

3 Logical Proofs

In SSL, logical proofs derive theorems from axioms (or auxiliary assumptions)
within a correct and complete calculus. In WIL, however, a proof procedure
transforms initial logical formulas into ideal diagrams that enable the identifi-
cation of the corresponding logical form. Hence, logical proofs in WIL are not
merely proofs of logical theorems. A proof in WIL answers the more general
question of how an initial formula contributes to identifying conditions for truth
and falsehood in general. The proof of a logical theorem (or, likewise, a logical
contradiction) is merely a special case of this general procedure.

Because ideal diagrams identify conditions for truth and falsehood and, con-
sequently, also allow one to decide whether the initial formulas are “true in all
interpretations”, a proof procedure in WIL amounts to a decision procedure. I
will discuss the general question of decidability in section 7. For now, it may
suffice to say that the crucial challenge in WIL is to specify algorithms for trans-
forming logical formulas into ideal diagrams. In the remainder of this paper, I
will present a programmatic overview of WIL, without discussing the technical
details of the algorithms for solving this problem. In the following two sections,
however, I will address the question of how to specify the ideal diagrams that
result from the aforementioned transformation from initial formulas.

4 Ideal Diagrams I - Propositional Logic

From 1912 to 1914, Wittgenstein developed his so-called ab-notation as a means
of uniquely representing conditions for the truth and falsehood of propositions
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of a certain logical form.2 He illustrated this notation with various diagrams of
several logical formulas. He used similar diagrams in [Wittgenstein(1994)], re-
mark 6.1203, to demonstrate how to identify tautologies by applying syntactic
criteria to the resulting expressions. Instead of the ab-notation, he used T and F
as “poles” representing the possibilities of truth and falsehood. Wittgenstein also
suggested transforming his diagrams into a simpler pole-group notation that cor-
responds to certain disjunctive normal forms (DNFs) (cf. [Wittgenstein(1979)],
p. 102, and [Wittgenstein(1997)], letter 30). His notation was intended to ap-
ply not only to propositional logic but also to FOL (cf. [Wittgenstein(1979)], p.
95f). In a letter to Russell, he even conjectured that applying his notation to
FOL would enable the identification of tautologies throughout the entire realm
of FOL (cf. [Wittgenstein(1997)], letter 30). However, he never spelled out in
detail how to apply his notation to arbitrary FOL formulas, nor did he discuss
in detail how to achieve unique representations of logical forms in propositional
logic (or even FOL). The following is an attempt to revisit Wittgenstein’s claim
and specify in more detail what is needed in order to represent logical forms by
means of ideal diagrams. In this short paper, I cannot elaborate all of the rules
for generating such diagrams from logical formulas. Instead, I will focus only on
their general properties.

I will initially restrict the discussion to propositional logic. In this case, the
application of the well-known Quine-McCluskey algorithm to obtain a set of min-
imal DNFs is a crucial step in the generation of ideal diagrams. Minimal DNFs
distinguish sufficient conditions for truth (the disjuncts) and non-redundant
parts of those conditions (the conjuncts); cf. condition 2(a) on p. 3. This al-
lows conditions for the truth of admissible instances of an initial formula to be
read off. The same applies to conditions for falsehood, if one also generates the
set of minimal DNFs of the negation of the initial formula. By the nature of min-
imal DNFs, no part of the paraphrase of any single minimal DNF is redundant;
cf. condition 2(c) on p. 3.

However, the minimal DNFs of a formula of propositional logic are not
unique. Therefore, their paraphrase does not satisfy condition 1 on p. 3. For
example, formula (1) has the two minimal DNFs expressed in (2) and (3):

P ∧ ¬Q ∨ ¬P ∧Q ∨ P ∧R ∨Q ∧R (1)

P ∧ ¬Q ∨ ¬P ∧Q ∨ P ∧R (2)

P ∧ ¬Q ∨ ¬P ∧Q ∨Q ∧R (3)

However, if one regards a representation of the entire finite set of minimal DNFs
as the ideal diagram, then the requirement of uniqueness is satisfied. One might
object that if both formulas (2) and (3) together are taken to be part of the ideal
diagram, then the non-redundancy requirement for the paraphrases of ideal dia-
grams (cf. condition 2(c) on p. 3) is not satisfied. However, I propose to interpret

2 Cf. his letters to Russell during this period, reproduced in [Wittgenstein(1997)], as
well as Wittgenstein’s Notes on Logic and his Notes dictated to G.E. Moore, both
printed in [Wittgenstein(1979)].
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the non-uniqueness of the minimal DNFs in terms of an “ambiguity of the log-
ical form”. This ambiguity is represented by a corresponding ambiguity within
the ideal diagram. Therefore, the ideal diagram must represent all alternative
minimal DNFs, and thus, no alternative is superfluous. Each alternative might
be called a representation of a “variant” of the logical form. Such an alternative
must not, in itself, contain any redundancy in the description of the conditions
for truth or falsehood. However, all alternatives in the entire set of such alter-
natives must be considered in order to characterize the ambiguity of the logical
form. The extent of that ambiguity can be quantified by the number of min-
imal DNFs. This is why condition 2(c) on p. 3 refers to “all non-redundant
paraphrases”. The non-redundancy requirement applies only to each paraphrase
individually and not to the set of all such paraphrases.

Instead of representing all minimal DNFs as a set, one may distinguish com-
ponents that are common to all minimal DNFs from those that are different by
using a two-dimensional notation as in expression (4):

P ∧ ¬Q ∨ ¬P ∧Q ∨ P∧R
Q∧R (4)

In contrast to (4), only one minimal DNF is generated from ¬(1) to represent
the conditions for the falsehood of propositions that are admissible instances of
(1):

¬P ∧ ¬Q ∨ P ∧Q ∧ ¬R (5)
Wittgenstein’s ab- or TF-notation also translates logical constants. T- and

F-poles assigned to atomic propositions indicate the affirmation and negation,
respectively, of the corresponding atomic propositions. Single T-pole-groups (F-
pole-groups) list the non-redundant subconditions that constitute a sufficient
condition for truth (falsehood). These single pole-groups, in turn, are arranged
into lists of the sufficient conditions for truth or falsehood. Making use of the
features of this pole-group notation, one obtains the following ideal diagram as
a representation of the logical form of (1):

T−


{T− P, F−Q},
{F− P, T−Q},
{ T−P, T−R
T−Q, T−R

}


F−

{
{F− P, F −Q},

{T− P, T−Q, F−R}

}

Fig. 1. Ideal diagram of (1)

From this diagram, it is possible to directly read off the conditions for the
truth and falsehood of admissible instances of formula (1). The following is a
paraphrase of this ideal diagram:3

3 I abstain here from cumbersome references to instances of atomic formulas. Thus, I
refer to P instead of “an admissible instance of P”, etc. I also abstain from specifying
the trivial algorithm for paraphrasing ideal diagrams of propositional logic.
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An admissible instance of formula (1) is true iff

– P is true and Q is false, or

– P is false and Q is true, or

– one of the following alternatives:
P is true and R is true / Q is true and R is true.

An admissible instance of formula (1) is false iff

– P is false and Q is false, or

– P is true and Q is true and R is false.

This paraphrase of the ideal diagram is valid for all formulas equivalent to
(1). Unlike the paraphrases of propositional formulas in general, the paraphrase
of the ideal diagram of a propositional formula identifies common features of
the models and counter-models for all formulas in the set of logically equivalent
formulas. Instead of specifying single interpretations as models and counter-
models, as is the case in model theory, the ideal diagram describes the properties
of sets of models and counter-models. This difference is significant when there
are an infinite number of models and counter-models, as in FOL.

In the case of logical theorems, Wittgenstein’s TF-notation makes explicit
that the conditions for truth and falsehood do not depend on the truth values
of any atomic propositions. P ∨ ¬P and Q ∨ ¬Q ∨ (R ∧ S), for example, are
logically equivalent theorems. As long as one is interpreting logical formulas,
the interpretation of the first formula seems to depend on the truth values of
instances of P , whereas the interpretation of the second seems to depend on the
truth values of instances of P , Q and R. According to WIL, however, this is an
illusion caused by the outer forms of the formulas. As soon as one is relating
semantics not to initial formulas but rather to ideal diagrams, it becomes clear
that logical theorems and their instances do not depend on the truth values
of any atomic propositions. They all have the same conditions for truth and
falsehood; they all say the same thing, namely, nothing. This becomes apparent
upon the application of a reduction algorithm that deletes atomic propositions in
the process of generating the ideal diagram. One may use T − {�} to represent
that the conditions for truth comprise the entire space of logical possibilities,
whereas F − { } (or, alternatively, F − {}) may be used to represent that the
conditions for falsehood are not included within the space of what is logically
possible. This is the shared logical form of all “logical propositions” that Russell
was unable to present within his symbolism (cf. p. 2).

By applying the well-known Quine-McCluskey reduction algorithm in propo-
sitional logic and several rather trivial rules for generating ideal diagrams within
Wittgenstein’s TF-notation, the concept of proof in the WIL version of proposi-
tional logic is fully defined. From this, it is clear what must be achieved within
FOL: one must find a procedure for generating minimal DNFs in FOL (= FOLD-
NFs) and translate the resulting sets of minimal FOLDNFs into ideal diagrams
in Wittgenstein’s notation. [Lampert(2017b)] prescribes how to achieve this for
the fragment of FOL that starts from formulas that do not contain any dyadic
sentential connectives in the scope of quantifiers. [Lampert(2017c)] generalizes
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this prescription to a decision procedure for the FOL fragment that is translat-
able into disjunctions of conjunctions of formulas that do not contain ∨ in the
scope of quantifiers. [Lampert(2017a)] defines an effective procedure for gener-
ating FOLDNFs in general and specifies an effective procedure for minimizing
them.4 However, this procedure does not fully satisfy the requirements for a
proof procedure of WIL because it does not fully minimize the FOLDNFs in
every case. The task of finding such a procedure remains an open problem. In
the following section, I first define the syntactic properties of minimal FOLDNFs
and then specify (i) how to translate them into ideal diagrams and (ii) how to
paraphrase those ideal diagrams. This discussion should clarify the meaning of a
representation of a logical form in FOL, although to date, no general algorithm
has been specified that can generate such representations in all cases.

5 Ideal Diagrams II - First-Order Logic

Minimal FOLDNFs are defined in terms of primary formulas, which correspond
to negated and non-negated atomic formulas in the DNFs of propositional logic.
The term negation normal forms (NNFs) refers to formulas that contain ¬ only
directly to the left of atomic propositional functions and ∧ and ∨ only as dyadic
connectives.

Primary Formula:

1. An NNF that does not contain ∧ or ∨ is a primary formula.
2. NNFs that contain ∧ or ∨ are primary formulas iff they satisfy the following

conditions:

(a) Any conjunction of n conjuncts (n > 1) is preceded by a sequence of
existential quantifiers of minimal length 1, and all n conjuncts contain
each variable of the existential quantifiers of that sequence.

(b) Any disjunction of n disjuncts (n > 1) is preceded by a sequence of
universal quantifiers of minimal length 1, and all n disjuncts contain
each variable of the universal quantifiers of that sequence.

3. Only NNFs that satisfy condition 1 or 2 are primary formulas.

Primary formulas represent the limit to which quantifiers can be driven in-
wards by applying PN laws, i.e., the equivalence laws that are used to generate
prenex normal forms if applied in the opposite direction. Cases 2(a) and 2(b)
above are the only cases in which PN laws cannot be applied to drive quan-
tifiers any farther inwards. As will be shown below, primary formulas can be
translated into diagrams within Wittgenstein’s notation that satisfy the con-
ditions for ideal representations given that no conjunct or disjunct is redun-
dant. [Lampert(2017a)], section 2, specifies an effective algorithm for generating

4 This procedure as well as others are implemented at and can be applied via the link
given in footnote 1.
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FOLDNFs (i.e., disjunctions of conjunctions of primary formulas).5 Thus, there
is no difficulty in establishing this part of the procedure for generating ideal
diagrams for FOL.

Minimal FOLDNFs are defined as follows:

Minimal FOLDNF: A minimal FOLDNF is a disjunction of conjunctions of
primary formulas that satisfies the following condition: If any number of
conjuncts or disjuncts (whether they occur inside the scope of quantifiers, i.e.,
within the primary formulas, or outside the scope of quantifiers) is deleted,
then the resulting formula is not equivalent to the initial one.

Thus, no conjunct or disjunct is redundant in the case of minimal FOLDNFs.
Defining a general procedure for generating the set of minimal FOLDNFs from
FOLDNFs is the problematic part of implementing Wittgenstein’s concept of
proof within FOL.

The crucial difference between FOLDNFs and the DNFs of propositional
logic is the use of primary formulas. In order to clarify how they contribute
to specifying the properties of models and counter-models, I will describe how
they can be translated into ideal diagrams in Wittgenstein’s notation and then
illustrate how to paraphrase those ideal diagrams. Consider first an example of
a minimal primary formula to motivate its translation into some other notation:

∃y(∀x(¬Fxx ∨Hxy) ∧Gy) (6)

Suppose that this primary formula is part of a minimal FOLDNF that is
equivalent to an initial formula (the details of which are unimportant here). (6)
does not satisfy the standards of WIL in two respects: (i) it is equivalent to
all formulas obtained by renaming the variables, and (ii) it contains ∧ and ∨,
although these signs do not contribute to specifying truth conditions in the same
way that they do when they occur outside the scope of quantifiers within FOLD-
NFs. Because (i) is true, the particular type of each variable does not contribute
to representing the properties of models (or counter-models). Instead, it is the
relations between bound variables and the positions at which those variables oc-
cur in the atomic propositional functions that represent the properties of models.
Because (ii) is true, ∧ and ∨ cannot be paraphrased in the same way both inside
and outside the scope of quantifiers in FOLDNFs. Within primary formulas,
∧ does not separate non-redundant subconditions of a sufficient condition for
truth, and ∨ does not separate sufficient conditions for truth. (i) highlights how
conditions 1 and 2(a), as listed on p. 3, contribute to the ability of the outer
forms of logical formulas to disguise their logical forms, whereas (ii) highlights
the contribution of conditions 2(a) and 2(b).

These problems can be solved by applying the following algorithm to trans-
late primary formulas into their corresponding ideal two-dimensional “primary
diagrams” in a Wittgensteinian notation:

5 FOLDNFs are far less complex than Hintikka’s distribute normal forms of FOL; cf.
[Lampert(2017a)] for details.



10 Lampert

1. Translate the propositional functions. Replace variables with numbers to
indicate positions, and denote affirmation by T and negation by F.

2. Symbolize the relations between the bound variables and their positions. Use
forks to connect the numbers of the positions as follows:
(a) Open forks, e.g., /

\ , connect the numbers of positions connected by a

disjunction and bound by a universal quantifier.
(b) Closed forks, e.g., <, connect the numbers corresponding to all other

positions of one and the same variable.
When a bound variable occurs only once within only one propositional func-
tion, no fork is needed.

Proceeding from inside to outside, this algorithm results in the following trans-
lation of (6):

< 1
2

F-F12

∀ qq
NNNN

2 1 T-H12
∃ sss KKK

1 T-G1

Fig. 2. Ideal diagram of (6)

Thus, the bound variables, ∨ and ∧ are eliminated in favour of forks con-
necting the positions of the corresponding propositional functions.

This ideal diagram can now be paraphrased using a simple procedure that
proceeds from outside to inside:

- Some object, the same in the second position of H12 and in the first position
of G1, combined with all objects distributed among (i) the first and second
positions of F12 (where the same object appears in both positions) and (ii)
the first position of H12, makes the dyadic propositional function F12 false,
the dyadic propositional function H12 true, and the monadic propositional
function G1 true.

This paraphrase clarifies how the properties of figure 2 identify the properties
of models. Open forks represent distributions of objects, whereas closed forks
indicate identical objects in different positions.

Here, I omit the cumbersome but trivial specification of (i) the general algo-
rithm for translating FOLDNFs into ideal diagrams of FOL and (ii) the reading
algorithm for ideal diagrams of FOL. It should be clear that the crucial problem
encountered in an attempt to detail the proof procedure for WIL is specifying a
procedure for fully minimizing FOLDNFs.

The translation of a minimal FOLDNF results in a finite ideal diagram in
the TF-pole-group notation (cf. p. 5), in which each finite group describes the
properties of a possibly infinite set of models (or counter-models) and each pri-
mary ideal diagram describes certain properties that all (counter-)models in
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such a set share. Instead of referring to an infinite number of models that may,
in turn, involve infinite domains and infinite interpretations of atomic propo-
sitional functions, finite descriptions of the properties of such infinite sets are
provided, independently of and prior to the evaluation of interpretations. The
logical form of the models is identified, thus making it superfluous to explic-
itly refer to infinity. From the perspective of computability, this is crucial and
desirable.

6 Application of Logic - The Question of Adequate
Formalization

In this section, WIL is applied for the analysis of the logical forms of ordinary
propositions. Two examples are presented that illustrate the misleading form
thesis with respect to ordinary propositions, and the standard for adequate for-
malization according to WIL is explained. I assume the logic to be FOL. There-
fore, the logical forms are restricted to logical forms that are expressible in terms
of first-order formulas.

Example 1 concerns propositions of the following form:

All F’s of G’s are F’s of H’s. (7)

This form assumes that F , G and H are variables of atomic propositional
functions. The following propositions are instances of (7):

All children of mothers are children of fathers. (8)

All heads of horses are heads of animals. (9)

All bets on winning numbers are bets on prime numbers. (10)

The logical forms of (8) to (10) must be independent of any specific internal
relations between the meanings of the concepts invoked. From a logical stand-
point, any possible combinatoric extension of these concepts is logically possible
regardless of how strange, or even inconceivable, such a state of affairs would
be. Therefore, mothers also being fathers, horses not being animals and headless
horses are all logical possibilities. However, this does not mean that such strange
possibilities correspond to truth conditions of their respective sentences. Instead,
according to WIL, distinguishing between logical possibilities that make a sen-
tence true and those that falsify it is a question of adequate logical formalization.
The logical form shows how the truth conditions of a complex proposition depend
on logically possible extensions of its atomic propositional functions.

The following two logical formulas are reasonable candidates for a logical
formalization of propositions instantiating (7):6

6 Standard logic textbooks, such as [Copi(1979)], p. 131f., or [Lemmon(1998)], p. 131f.,
formalize (9) by (11); by contrast, [Wengert(1974)] argues that only (8) should be
formalized by (11), whereas (9) should be formalized by (12).
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∀x(∃y(Fxy ∧Gy)→ ∃z(Fxz ∧Hz)) (11)

∀x∀y((Fxy ∧Gy)→ (Fxy ∧Hy)) (12)

WIL requires ideal diagrams to make explicit the conditions for the truth and
falsehood of the formalized propositions in relation to certain atomic proposi-
tional functions. According to WIL, it is not logical formulas but ideal diagrams
that are judged to be adequate or inadequate as representations of the logical
forms of formalized propositions. Consequently, it is possible to assign unique
logical forms to unambiguous propositions within this framework. There is no
need for formalization criteria that call for a similarity between logical and gram-
matical forms to allow one to choose among logically equivalent formulas (cf.,
e.g., [Peregrin & Svoboda(2017)], p. 73).

For simplicity, I will write down only the ideal diagrams for the falsehood
conditions of (11) and (12) (cf. figures 3 and 4, respectively). The corresponding
representations of the truth conditions are symmetrical in this case.

F−




1 ∃ < 2
1

T-F12
T-G1∃ ��??

1 ∀ /
\

2
1

F-F12
F-H1




Fig. 3. F -pole-groups of the ideal diagram of (11)

F−




2 ∃ 1 T-F12

∃



444
1 T-G1

1 F-H1




Fig. 4. F -pole-groups of the ideal diagram of (12)

According to an understanding of (8) in which “mother” and “father” refer
to “biological mother” and “biological father”, respectively, one can view fig-
ure 3 as an adequate formalization of the conditions for the falsehood of (8),
whereas figure 4 can be seen as an adequate formalization of the conditions for
the falsehood of (9). The difference is that (9) is false if there exists a head that
is the head of a horse that is not an animal, whereas (8) is not false if there
exists a child that is a child of a mother who is not a father. Instead, (8) is false
only if some child exists who is a child of a mother but not of a father. In the
case of (10), both figures 3 and 4 present reasonable forms for paraphrases of
the conditions for falsehood. This situation shows that the meaning of (10) is
ambiguous. Overall, this discussion demonstrates that the shared outer form (7)
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does not determine a unique logical form. This, however, does not mean that it
is not reasonable to assign a logical form to a certain ordinary proposition with
respect to a given set of atomic propositional functions. Instead, WIL provides
the tools to do so while clarifying the conditions for the truth and falsehood of
the initial propositions.

Example 1 has demonstrated that the outer form of a proposition does not
determine a unique logical form. The following example illustrates that the outer
form of a proposition also does not determine whether a proposition has a proper
logical form at all. Thus, WIL provides the tools not only to express the condi-
tions for the truth and falsehood of propositions within a logical framework but
also to make explicit that certain propositions are not expressible within this
framework.

Consider propositions of the following form:

If someone (is in relation) F (to) a G, then a G exists. (13)

The following propositions are instances of (13) (cf. [Montague(1966)], p. 266,
and [Quine(1960)], §30):

If someone loves a women, then a woman exists. (14)

If someone seeks a unicorn, then a unicorn exists. (15)

(13) can be translated into the following FOL formula:

∃x∃y(Fxy ∧Gy → Gy) (16)

(16) is a logical theorem. Thus, it seems reasonable to formalize (14) by the
ideal diagram of logical theoremhood (i.e., a diagram with empty conditions
for falsehood). However, this is not the case for (15), which will most likely
be judged to be false. This is why “x seeks y” is commonly regarded as an
inadmissible instance of an atomic function variable within FOL.7 From this it
follows that logical forms cannot be assigned to propositions involving such a
predicate. Therefore, (15) has no proper logical form, whereas (14) does.

The outer form of a proposition determines neither a unique logical form
(cf. (7)) nor whether various propositions of a certain form share a logical form
at all (cf. (13)). This is even true in cases of instances of provable formulas.
The equivalence of the conditions for truth and falsehood is the criterion for

7 According to [Quine(1960)], §30, a predicate such as “x seeks y” does not refer to
a set of pairs and, thus, does not satisfy the principle of extensionality. However,
the question is how one can know this without referring to some failure of logical
formalization. For our purposes, it is sufficient to note that mere instantiation of
logical formulas does not guarantee that those instances behave in accordance with
the laws of logic. Therefore, one must distinguish between admissible and inadmis-
sible instances. According to WIL, instances are inadmissible if they are not judged
to be true despite instantiating provable formulas.
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adequate formalization when applying logic to propositions, and this cannot be
judged without first generating ideal diagrams. According to WIL, interpretation
comes last, not first.

7 Application of Logic - The Question of Decidability

A typical argument against Wittgenstein’s conception of logic asserts that his
understanding of logical proof assumes decidability, which is in conflict with
the Church-Turing theorem (cf., among others, [Landini(2007)], p. 118, and
[Potter(2009)], p. 181f). However, this argument is not conclusive because the
undecidability proof of FOL makes assumptions that WIL rejects.

Turing’s undecidability proof relies on a formalization of the code of Turing
machines. Furthermore, it relies on a claim that propositions about Turing ma-
chines that result from substituting propositional functions for function variables
in provable formulas are true. To justify this claim, Turing explicitly refers to
the following general principle (cf. [Turing(1936)], p. 262):

If we substitute any propositional functions for function variables in a
provable formula, we obtain a true proposition.

As argued in the previous section, this principle applies only to “admissible
instances”, i.e., instances that have a certain logical form and, hence, have con-
ditions for truth and falsehood that are expressible within FOL. However, the
expressibility within FOL is questionable in the case of diagonalization, which
produces self-referential propositions. For example, it is common to reject “This
proposition is not true” as an admissible instance of the function variable P in
the provable formula P ↔ P . Like other undecidability proofs, Turing’s unde-
cidability proof rests on diagonalization. Turing argues that a Turing machine
E that decides on any logical formula cannot exist because the decision on a
formula involving the formalization of E in the diagonal case cannot correspond
to the behavior of certain machines involving E . The quoted principle does not
demonstrate that Turing’s formalization of Turing machines is adequate in the
diagonal case. Therefore, his inference of the non-existence of a Turing machine
E is a fallacy.8

8 Wittgenstein and Peirce

There are many similarities and differences between WIL and PIL.9 I refer only
to the most essential ones in the following.

8 In fact, I have detailed a decision procedure for pure FOL without identity on the ba-
sis of a Wittgensteinian conception of proof (cf. the link given in footnote 1). For the
details of a Wittgensteinian critique of undecidability proofs, cf. [Lampert(2017d)].

9 Cf., in particular, [Shin(2002)] and [Dau(2006)] for detailed elaborations of PIL.
[Pietarinen(2006)] provides a game-theoretic interpretation of PIL and relates this
interpretation to the later work of Wittgenstein. By contrast, I refer to the early work
of Wittgenstein and his conception of a logical proof as a mechanical transformation
into ideal diagrams.
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Peirce distinguished two purposes of logic: to investigate logical theories and
to aid in the drawing of inferences. A logical calculus serves the latter purpose,
whereas a logical system serves the former. Such a system should explain what
is expressible through logic. To this end, it must not allow for ‘any superfluity
of symbols’ ([Peirce(1931-1958)], 4.373):

It should be recognized as a defect of a system intended for logical study
that it has two ways of expressing the same fact, or any superfluity of symbols,
although it would not be a serious defect for a calculus to have two ways of
expressing a fact.

Similar to Peirce’s distinction between the calculi of symbolic logic and
his existential graphs, Wittgenstein drew a distinction between the axiomatic
proof method and his own proof method (cf. [Wittgenstein(1979)], p. 109, and
[Wittgenstein(1994)], 6.125). On the one hand, he emphasized that the two meth-
ods are equivalent (i.e., do not differ in their results; cf. [Wittgenstein(1994)],
6.125f., and [Wittgenstein(1994)], p. 80). On the other hand, he regarded the tra-
ditional method of symbolization, which allows for ‘a plurality’ of equivalent sym-
bols, as defective with regard to the analysis of propositions ([Wittgenstein(1997)],
p. 102[3]; see also p. 93[1] and [Wittgenstein(1994)], 5.43):

If p = not−not−p etc., this shows that the traditional method of symbolism
is wrong, since it allows a plurality of symbols with the same sense; and thence
it follows that, in analyzing such propositions, we must not be guided by
Russell’s method of symbolizing.

Iconic logic can be distinguished from symbolic logic by the search for a pro-
cedure for transforming logical formulas into ideal diagrams that do not permit
any ‘plurality’ or ‘superfluity’ of symbols.

Wittgenstein considered the need for a theory of deduction and for semantics
as foundations of pure logic to be a result of a deficient symbolism. He desired to
eliminate the need for semantic foundations by identifying ‘the sense’ of propo-
sitions (i.e., the conditions for their truth and falsehood) by means of iconic fea-
tures of ideal diagrams. According to Wittgenstein, it is not reality (facts) but
rather the logical possibilities of truth and falsehood that are represented by ideal
diagrams. This is why WIL introduces bipolarity as a fundamental property of
a proper logical notation, whereas Peirce claims that ‘symmetry always involves
superfluity’ and that symmetries ‘are great evils’ for ‘the purposes of analysis’
(cf. [Peirce(1931-1958)], 4.375). In this respect, WIL differs from Peirce’s exis-
tential graphs, which seem to instead be guided by the desire to represent reality
(cf. the above quote from [Peirce(1931-1958)], 4.373, and [Shin(2002)], p. 52). It
is for this reason that existential graphs do not correspond to FOLDNFs, nor
even to NNFs (given an endoporeutic reading). The question of how to read
or interpret existential graphs is a controversial one. From a Wittgensteinian
perspective, this very controversy indicates that these graphs share some of the
deficiencies of the conventional logical symbolism.
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