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Abstract. This paper argues that it cannot be proven that all computable functions are
expressible in a language based on first-order logic (FOL) without presuming that FOL is
undecidable. Since undecidability proofs of FOL presume the expressibility of computable
functions within a language based on FOL, undecidability proofs of FOL are analysed as
being underdetermined. They, in fact, prove that either FOL is undecidable or not all
computable functions are expressible within a language based on FOL. The critique of the
expressibility of computable functions within FOL is based on an analysis of the diagonal
method and its application in undecidability proofs.

keywords: Church-Turing Theorem, Church-Turing Thesis, semantics and computa-
tion, decision problem, diagonalization

1. Introduction

Undecidability proofs of FOL rest on proofs concerning the expressibility of computable
functions within a language based on FOL. It is argued that a contradiction follows from
expressing a decision function for FOL within a language based on FOL in the case of di-
agonalization. This contradiction is used to reduce the assumption that FOL is decidable
to absurdity. This section argues that this conclusion is not conclusive because the possi-
bility to express a decision function for FOL within a language based on FOL cannot be
proven without assuming that FOL is undecidable. Thus, the contradiction may likewise
be used to reduce the assumption to absurdity that a decision for FOL is expressible within
a language based on FOL. By analysing proofs based on the diagonal method as proofs of
undefinability theorems, it is argued that this alternative conclusion is straightforward.

This argument is inspired by Wittgenstein’s critique of undecidability proofs (cf.
[Wittgenstein (1967)], Part I, Appendix I and Part V, §§18f.). Wittgenstein’s critique,
however, is very general and related to Gödel’s proof of the incompleteness of axiomatic
systems of arithmetic (like Principia Mathematica PM or Peano Arithmetic PA). In con-
trast, I relate the analysis of undecidability proofs as being underdetermined to Turing’s
and Church’s proof of the undecidability of FOL and show, which step in these proofs is
questioned for what reasons. These proofs are based on a contradiction following from
expressing an hypothetical assumed decision function for decidability of FOL in a language
based on FOL. The question is what to infer from this contradiction. In contrast, Gödel’s
proof does not consider expressing provability as a computable function (cf. Def. 46 in
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[Gödel (1986)], p. 171, where Gödel defines ‘x is a provable formula’ by a notion ‘of which
we cannot assert that it is recursive’). His proof is based on the much weaker assumption
of recursively defining ‘y is a proof of x’ and expressing this recursive function as an open
formula that he abbreviates as yBx. Provability (in PM or PA) is merely expressed by
binding the free variable y in yBx. Gödel’s proof derives a contradiction through diagonal-
izing ∃yyBx and assuming it or its negation to be provable within an axiomatic system such
as PM or PA. This contradiction can also be used to show that these axiomatic systems
are incomplete (given their (ω-)consistency). Such an option is not available in the case
of undecidability proofs of FOL since FOL can be conceptualized in an axiom-free form.
Wittgenstein’s sort of critique should not be related to Gödel’s proof in the first place but to
Turing’s and Church’s proof. However, I will not relate my critique any further to Wittgen-
stein’s remarks that give rise to many exegetical problems. Instead, this paper explains in
standard terms why and how the critique of undecidability proofs as being underdetermined
applies to Turing’s and Church’s proofs.

I introduce the terminology needed for this analysis in sections 2 to 4. Section 2
is related to expressing computable functions by Turing machines or recursive functions.
Section 3 discusses the idea of expressing propositional functions by open formulas of a
language based on FOL. Section 4 then analyses proofs by contradiction based on the
diagonal method as inexpressibility theorems. Based on this analysis, I will analyse Turing’s
proof (section 5) and Church’s proof (section 6) and argue that they can be analysed as
inexpressibility proofs of a decision function for FOL within a language based on FOL
instead of inexpressibility proofs of a decision function for FOL in a language of computation
such as Turing machines or recursive functions.

2. Expressing a Computable Function

Undecidability proofs can be analysed as proofs that show that certain functions cannot be
expressed by Turing-computable or recursive functions. This section specifies the notion of
expressing a computable function.

The general problem in undecidability proofs is the question of whether certain functions
are isomorphic.

Definition 2.1. Two functions are isomorphic iff

(1) their domains can be correlated in a one-to-one manner,
(2) their ranges can be correlated in a one-to-one manner, and
(3) all and only correlated values are assigned to correlated arguments.

Definition 2.2. Functions can be mapped onto each other iff they are isomorphic.

Definition 2.3. An interpretation of a function f is a set of rules for mapping a function
g onto f .

Definition 2.4. A function f expresses a function g iff f is interpreted such that g is
mapped onto f .

Remark 2.5. Typically, proofs that show that a function g cannot be expressed by func-
tions f of a specific type are proofs by contradiction. For the sake of reducing an assumption
to absurdity, one may assume that a function f expresses a function g although, in fact, f
cannot express g. In that case, there is no interpretation of f that maps g onto f . Although
no such interpretation exists, one ‘intends to interpret’ f such that it can be mapped onto
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g. The proof then shows that such an intention must fail: no set of rules can be specified
to realize this intention. Thus, the intended interpretation of a function f of a specific type
is not ‘reliable’. I will specify this terminology in relation to the interpretation of FOL
expressions below. However, I will also apply it to functions, as explained in this remark.

I presume familiarity with the concepts of Turing machines and recursive functions.
String functions computed by Turing machines provide a paradigm for computable func-
tions. The question of the computability of a function g in which we are interested can
be posed as the question whether string functions f can be interpreted such that g can be
mapped onto f .1 Turing’s thesis states that any computable function can be expressed by
a Turing-computable string function.

Definition 2.6. Turing’s thesis: A function is computable iff it is expressible by a Turing-
computable string function.

Church’s thesis specifies an alternative statement based on number-theoretic recursive
functions.

Definition 2.7. Church’s thesis: A function is computable iff it is expressible by a recursive
function.

Since one can specify rules for mapping Turing-computable string functions and recur-
sive functions onto each other, these two theses are provably equivalent.

Definitions 2.3 to 2.7 suffer from the vagueness of the concept of a rule in Definition
2.3. However, there is no need to enter a discussion of this concept in this paper. By
referring to rules, I wish to exclude non-standard mappings such as a mapping of natural
numbers to a binary notation for natural numbers such that all and only binary strings
ending with ‘0’ are strings of numbers of halting Turing machines. Such a notation would
make the halting problem decidable (cf. [Boker & Dershowitz (2008)], p. 206, applying
[Shapiro (1982)], p. 17, corollary C2a). Such a non-standard mapping cannot be specified
by any rules. It is merely specified by a general description that says nothing about how
to realize the mapping. Therefore, the halting problem is not computable according to the
above definitions, even though there may exist such a non-standard mapping relative to a
non-standard notation that is not available through any interpretation in terms of a set of
rules.

I also leave it an open question whether the concept of a rule implies the concept of
computability, which would render the Church-Turing thesis circular. This is a well-known
problem in the literature (cf., in particular, [Rescorla (2007)]) that this paper does not
address. The same applies to the general problem of giving a precise definition of the
Church-Turing thesis that specifies in general, precisely and non-circularly how to express
arbitrary functions by Turing-computable string functions or recursive functions. This
paper is not concerned with a critique of the Church-Turing thesis. Instead, I presume the
standard terminological background for undecidability proofs. I consider the (im)possibility

1 Cf., e.g., [Weihrauch (2000)], p. 3:

Ordinary computability theory first introduces computable partial word functions f : ⊆
Σ∗ → Σ∗ explicitly, for example, by means of Turing machines. For defining computability
on other sets M (rational numbers, finite graphs, etc.) words are used as ‘names’ or ‘codes’
of elements of M . While a machine still transfers words to words, the user interprets these
words as names of elements from the set M .
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of deciding FOL in a standard way under the assumption that no problems arise from the
application of the Church-Turing thesis. It is uncontroversial that any program written in
an ordinary computer language can be mapped onto a Turing-computable string function
by applying rules of a concrete translation procedure that can itself be carried out by
a computer program. Thus, the question at stake can be specified in a very concrete
way, independently of the notorious problems with giving a precise general definition of a
computable function: Do undecidability proofs indeed prove that the endeavour to specify
a decision procedure for FOL-provability in an ordinary computer language is futile?

3. Expressing a Propositional Function

Computer languages in general and Turing machines or definitions of recursive functions in
particular are languages for expressing computable functions. In contrast, FOL is, first and
foremost, a language that can be used to express propositional functions by open formulas
containing at least one free variable relative to an interpretation =. Interpretations = of
FOL expressions obey the principles of extensional semantics: a propositional variable
is interpreted by a proposition that refers to one and only one truth value (principle of
bivalence), a variable is interpreted by a set serving as the domain of quantification, a name
symbol is interpreted by one and only one object of the domain, an n-place function symbol
is interpreted by a function mapping n-tuples of the domain to values of the domain, an
n-place predicate symbol is interpreted by a set of n-tuples from the domain, and logical
connectives and quantifiers are interpreted as truth functions mapping atomic propositional
functions such that the truth value of a complex proposition depends on nothing but the
referential relations of its constituents.

Definition 3.1. An interpretation = of an FOL expression ϕ assigns extensions (truth
values, objects, or sets) to the respective constituents of ϕ in accordance with the principles
of extensional semantics.

Definition 3.2. A number-theoretical interpretation of an FOL expression ϕ interprets ϕ
with the natural numbers as the domain of quantification.

Definition 3.3. The language of arithmetic, LA, is based on FOL, with ‘=’ as the only
predicate and with the addition of the constant ‘0’, the one-place function symbol ‘S’,
and the two-place function symbols ‘+’ and ‘×’. LA is interpreted by its standard fixed
number-theoretical semantics =A.

While interpretations = of FOL expressions are not fixed and are not necessarily
number-theoretical in nature, the interpretation =A of LA is fixed and number-theoretical.
‘0’ is interpreted to refer to the number 0; ‘S’ is interpreted by the successor functions; ‘+’,
by addition; ‘×’, by the multiplication of natural numbers; and ‘=’, by equality. I call this
the ‘standard fixed number-theoretical semantics of LA’.

Definition 3.4. The interpretation =A of an LA expression ϕ assigns extensions (truth val-
ues, natural numbers, or sets of n-tuples of natural numbers) to the respective constituents
of ϕ in accordance with the standard fixed number-theoretical semantics of LA.
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LA is ‘a language based on FOL’, i.e., translation rules can be defined that eliminate all
the vocabulary extending FOL such that logical properties, e.g., satisfiability, are preserved.
In the following, I abstain from considering languages other than LA that are based on FOL.2

Definition 3.5. A propositional function f(x) is expressed by an open LA- or FOL formula
ϕ(x) relative to an interpretation = iff for all x that satisfy f(x), the objects of the domain
=(x) satisfy =(ϕ).

This definition can be trivially extended to n-place propositional functions. Henceforth,
I tacitly presume that considerations concerning one-place functions also extend to n-place
functions.

Definition 3.6. An intended interpretation I of an LA or FOL expression ϕ assigns ordinary
expressions to the constituents of ϕ with the intention of providing an interpretation =(ϕ).

Example 3.7. The intended interpretations of the vocabulary with fixed interpretations
are I(¬) = ‘not’, I(∧) = ‘and’, I(∨) = ‘or’, I(→) = ‘if . . . then . . .’, I(↔) = ‘if and only
if’, I(∀) = ‘all’, I(∃) = ‘some’, I(0) = ‘zero’, I(S) = ‘successor of’, I(+) = ‘plus’, and I(×)
= ‘multiplied by’.

Remark 3.8. LA or FOL formulas can be paraphrased as ordinary propositions through
the use of intended interpretations.

Unlike interpretations (=), intended interpretations (I) do not obey the principles of
extensional semantics by definition. Rather, intended interpretations can be unreliable (in-
admissible, not permissible, or impossible).

Definition 3.9. An intended interpretation I of an LA or FOL expression ϕ is reliable iff
it provides an interpretation =(ϕ).

This definition does not provide any criterion for identifying unreliable intended in-
terpretations. The identification of (un)reliable interpretations is a non-trivial problem.3

An unreliable intended interpretation may intend to provide a reliable interpretation of on
open formula in terms of a (well-defined) propositional function. However, this intention
may fail to be realized. The mere assignment of well-formed ordinary propositions to well-
formed FOL expressions does not guarantee that the intended interpretations, in fact, yield
well-defined propositional functions.

FOL is sound relative to interpretations = but not to intended interpretations I since the
latter can be unreliable.4 One does not conclude that FOL is unsound because interpreting

2Definition 3.5 and the terminological distinction between expressing and capturing (cf. below Definition
4.1 are reminiscent of [Smith (2013)], p. 41.

3For example, [Peregrin and Svoboda(2017)], p. 70, propose an inferential ‘criterion for reliability (REL)’
that compares formal and informal inferential relations (cf., e.g., [Brun(2003)] for another extensive discus-
sion of the topic). One might use REL to identify unreliable intended interpretations in the case that
informal judgements are available; if, e.g., I(ϕ) does not follow informally from I(ψ) (i.e., the inference
is not judged to be truth-preserving) but ψ ` ϕ, then I(ϕ) and I(ψ) cannot both be reliable. Of course,
informal judgements can be assumed neither to be reliable nor to be available. This applies, in particular,
to the intended interpretations of the hypothetical diagonal cases involved in undecidability proofs (cf. the
following sections). However, criteria such as REL show that one cannot simply infer the validity of intended
interpretations from the provability of the formulas that are interpreted. Independent evidence is needed. In
the case of undecidability proofs, such independent evidence may well reside in the specification of a decision
procedure, which would demonstrate the unreliability of the intended interpretations involved.

4[Kreisel (1967)], pp. 152-154, deliberately distinguishes ‘intuitive logical validity’ (= logical validity
according to an intended interpretation I) from ‘truth in all set-theoretic structures’ (= truth in all =),
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the FOL proof ∃x(Fax∧Gx) ` ∃xGx by ‘Jack seeks something that is a unicorn; therefore,
something is a unicorn’ yields an inference that is not truth-preserving (here making use of
the following intended interpretations: I(x) = the set of all beings, I(F ) = ‘. . . seeks . . .’,
I(a) = ‘Jack’, and I(G) = ‘. . . is a unicorn’). Instead, one concludes that ‘seeks’ is not
a predicate that obeys the principles of extensional semantics since its second position is
not ‘referential’. It may well be that intended interpretations of provable formulas ϕ of a
language based on FOL are not true; in such a case, the intended interpretations are not
reliable.

Example 3.10. I(P ) = ‘This proposition is not true’ is not reliable since it does not refer
unambiguously to a truth value, according to the Liar Paradox. One cannot infer from the
provable formula P ↔ P that ‘This proposition is not true iff This proposition is not true’
is true.

Example 3.11. I(F (x, y)) = ‘x is a member of y’ and I(x, y) = ‘the set of all sets’ are not
reliable since these interpretations do not refer unambiguously to sets (Russell’s Paradox).
One cannot infer from the provability of ¬∃x∀y(Fyx↔ ¬Fyy) that the following statement
is true: ‘Not: Something is a set x of all sets y such that y is a member of x iff y is not a
member of y’ (more fluently, ‘A set composed of all normal sets does not exist’).

Remark 3.12. The analysis of paradoxes is controversial. Ramsey’s distinction between
semantic paradoxes (e.g., the Liar Paradox) and logical or set-theoretical paradoxes (e.g.,
Russell’s Paradox) is prominent (but also controversial). Ramsey claimed that only the
former show that certain expressions do not validly refer (or have a well-defined meaning),
although one might think that they do, while the latter are veridical paradoxes proving that
certain axioms or assumptions that one might think to be true are, in fact, false. According
to this analysis, Russell’s Paradox falsifies the unrestricted comprehension axiom schema
of naive set theory (i.e., the schema ∃x∀y(y ∈ x ↔ ϕ(y)). Such an analysis presumes
that the intended interpretations of logical formulas are reliable in the case of logical or set-
theoretical paradoxes. However, the analysis given in Example 3.11 contradicts this analysis;
according to the analysis given in Example 3.11, the analysis of Russell’s Paradox as a
veridical paradox commits the fallacy of intended interpretations, as defined in Definition
3.13. However, Example 3.11 is given only for the sake of illustration. The reasoning put
forward in this paper presumes neither any analysis of paradoxes nor any general claim
concerning the possibility of expressing ‘self-reference’ within the language of logic. It is
merely assumed that intended interpretations may violate the semantic principles of FOL
(for whatever reason) and, thus, it does not go without saying that one can infer the

stating merely that the former implies the latter without assuming that the latter also implies the former.
However, the assumption that provability implies ‘intuitive logical validity’ is assumed by Kreisel without any
further argument, and this assumption is not deliberate ([Smith (2013)], p. 356, likewise confuses soundness
with ‘evident validity’). Kreisel uses this assumption as the basis of his erroneous ‘informal rigorous proof’
for the equivalence of provability, ‘intuitive logical validity’ and ‘truth in all set-theoretic structures’ given
the equivalence of provability in a sound and complete calculus and truth in all set-theoretic structures.
However, the soundness of FOL calculi is related to extensional semantics (‘set-theoretic structures’, in
Kreisel’s words), and there is no way to infer the truth of instances or intended interpretations of provable
formulas from the soundness of FOL inference rules. One would instead need to show that the intended
interpretations obey extensional semantics. However, there is no rigorous way to do this; discussions of non-
extensional, so-called ‘opaque’ contexts are endless in the philosophy of logic. Typically, they are identified
by arguing that instances or intended interpretations of provable FOL formulas cannot be judged to be true.
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truth of intended interpretations of provable formulas. It is the analysis of logical or set-
theoretical paradoxes as veridical paradoxes that risks sanctioning such an inference on the
basis of Ramsey’s controversial general claim concerning his distinction of paradoxes. This
paper argues that any proof resting on such an inference should be justified by independent
reasoning and that a critical analysis of established proofs must scrutinize whether such a
reasoning is, in fact, provided.

Definition 3.13. The fallacy of intended interpretations is the inference of the truth of
I(ϕ) from the provability of ϕ.

Committing this fallacy is suggestive since (i) interpreting logical formulas by intended
interpretations seems to sanction those interpretations as logical (= obeying the laws of logic
and its semantics) and (ii) intended interpretations are intended to refer to set-theoretical
structures, and it comes as a paradoxical, counterintuitive surprise when one realizes by
some independent reasoning that they do not, in fact, refer to that to which they are
intended to refer. Semantic intention or intuition with regard to reference relations is not
a criterion for successful reference, however.

For the following, it is sufficient to acknowledge that intended interpretation may not
be reliable and that, therefore, one cannot infer the truth of an intended interpretation from
the provability of the formula it interprets. Independent evidence is needed to argue for
the reliability of intended interpretations. This is especially true when diagonalization is
involved (cf. the following section).

4. Inexpressibility Theorems and the Diagonal Method

The diagonal method can be analysed as a method of showing that a certain function cannot
be expressed by a certain type of function. This section presents the details of this analysis.

The term ‘diagonalization’ stems from Cantor’s application of the diagonal method by
referring to the diagonal of a matrix. Cantor defines an anti -diagonal by a function g that
assigns to each position n a value that differs from that in position n of the n-th entry of
the matrix. This method of defining an anti-diagonal is used to prove that no function f
defining a sequence of values in the matrix expresses g. To prove this, it is assumed that g
would define a function enumerated in the matrix. One can refer to the enumerated entries
in a matrix by indices. The diagonal method shows that g cannot be identified with some
function fn defining the values in the n-th row since the value in the n-th position of the
sequence defined by fn would not be well defined in that case. Diagonalization is either the
process or the result of taking the index of a function fn as its own argument. The diagonal
method is the application of diagonalization to prove that no function fn can express a
function g defined over the enumeration of functions f since it is impossible to interpret
any of the enumerated fn as g.

A so-called non-matrix-topological definition can be formulated by defining the diago-
nalization of open formulas ϕ(x) in a language based on FOL. Let dγe be the numeral of
the Gödel number of ϕ(x); then, the process of replacing x with dγe—or the result of this
process, ϕ(dγe)—is the diagonalization of ϕ(x).

Undecidability proofs based on the diagonal method typically involve the application of
the Diagonalization Lemma. This lemma presumes an axiom system that is at least as strong
as the (very weak) Robinson Arithmetic Q of elementary arithmetic. Q can be formulated
in LA. Although it is not proven rigorously in an absolute sense that Q is consistent, Q
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is assumed to be sound relative to =A (and, consequently, to also be consistent). Though
one may question this assumption from a finitistic point of view, I take the soundness and
consistency of Q for granted. In particular, Q is strong enough to capture diagonalization
in terms of a recursive function diag. While the notation for expressing a function refers to
the interpretation of a language (e.g., =A in the case of LA), the notion of capturing refers
to provability within a theory (cf. [Smith (2013)], p. 119):

Definition 4.1. A theory T captures the one-place numerical function f by means of the
open wff ϕ(x, y) iff, for any m, n,

(i) if f(m) = n, then T ` ϕ(m,n), and
(ii) T ` ∃!yϕ(m, y).

Here, (ii) satisfies the uniqueness condition for functions. Note that (i) and (ii) imply
that if f(m) 6= n, then T ` ¬ϕ(m,n).

Diagonalization in terms of a recursive function diag is independent of any intended
interpretation of the result of diagonalization. It is based on the purely syntactic action of
replacing a variable in a formula with a certain Gödel numeral, which, in turn, is defined
through purely syntactic means. I do not question that diagonalization in this sense is
definable in terms of a recursive function diag, nor that this recursive function can be
expressed by a function Diag within LA and captured by any theory T that is at least as
strong as Q. Referring to Diag in the diagonalized function ϕ(x) makes it possible to derive
the Diagonalization Lemma:

Definition 4.2. If T is at least as strong as Q and ϕ(x) is an open formula with one free
variable x defined in a language at least as rich as LA, then there exists a closed formula γ
in the language of T such that T ` γ ↔ φ(dγe).

I take this lemma (and, consequently, its proof) for granted. This lemma concerns the
provability of a formula, not the validity of its intended interpretations.

Many paradoxes, such as the Liar Paradox, Russell’s Paradox and Richards’ Paradox,
are based on the diagonalization of open sentences of either ordinary language or a semi-
formal language. One can diagonalize ‘x is not true’ by replacing ‘x’ in ‘x is not true’ with an
expression (such as ‘this proposition’) that is intended to refer to the resulting expression.
Similarly, ‘x is a set that is not a member of itself’ is diagonalized by replacing ‘x’ with an
expression that is intended to refer to a set specified by ‘x is a set that is not a member of
itself’.

Here, I will define diagonalization for expressions of the form f(x), such as fn(x), open
formulas ϕ(x) or open sentences such as ‘x is not true’. To do so, I use the general term
‘code’ for any sort of sign or denotation of such an expression, be it an index, a Gödel
numeral, a deictic expression or some other sort of sign. I do not presume that such a code
indeed refers to the expression to which it is assigned (although it is intended to refer to it).
For example, one can generate the Gödel numeral dγe for a formula ϕ, and this numeral
can occur in a formula ψ; whether dγe refers to a number, to ϕ, or to both according to a
reliable interpretation of ψ is not presumed in the process of generating dγe. Furthermore,
I refer to the result of the process of replacing x in f(x) with the code for f(x) as the
‘diagonalization’.

Definition 4.3. Let dγe be the code for f(x); then, f(dγe) is the diagonalization of f(x).

This definition is rather general; it does not imply that dγe is the code for f(dγe).
According to the Diagonalization Lemma, for example, it is only by diagonalizing an open
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formula ϕ(x) containing Diag that a resulting formula ϕ(dγe) is obtained that contains an
expression Diag(dγe) that is provably equivalent to the Gödel number of ϕ(dγe).

The diagonal method is based on diagonalization. In contrast to diagonalization, the di-
agonal method possesses the two features (i) and (ii) identified in Definition 4.4 by definition
(cf. [Jacquette (2004)], p. 70):

Definition 4.4. The diagonal method is a method of deriving proofs by contradiction by
making use of diagonalization, hence implying (i) some sort of inversion, denial, negation
or imposition of the complement of a diagonalization and (ii) some sort of self-application
(or intended self-reference) in the diagonalization resulting from (i).

Definition 4.5. A diagonal argument is an argument based on the diagonal method.

Definition 4.6. A diagonal case is a diagonalization used via the diagonal method in a
proof by contradiction.

Definition 4.4 is admittedly vague. Any definition of the diagonal method depends on
the extent of the proofs one intends to cover. For the following discussion of Turing’s and
Church’s proofs, a general and rather vague characterization of the diagonal method that
is consistent with its standard use suffices. Neither a discussion of the diagonal method
in general nor its general validity is at stake here; only the application of this method in
proofs of the undecidability of FOL is of interest.

One may question Definition 4.4 not only because it is vague but also because its ref-
erence to ‘proofs by contradiction’ is either too narrow or inadequate. The former critique
can be justified by, e.g., the distinction between good and bad diagonal arguments (cf.
[Simmons (1993)], p. 29): Bad diagonal arguments do not reduce to absurdity the assump-
tion of an entity that is not well defined, whereas good diagonal arguments either do not
assume any entity that is not well defined or reduce to absurdity the assumption that some
entity is well defined (which is a standard analysis to which I refer). The latter critique of
the classification of diagonal arguments as proofs by contradiction may be justified by noting
that proofs by contradiction are a specific class of logical proofs that presume well-defined
entities (cf., e.g., RFM IV, §28, as well as the intuitionistic project of a negationless mathe-
matics as formulated by [Griss (1946)] and [Nakano (2019)] for relating Wittgenstein’s and
Griss’ analyses of proofs by contradiction in mathematics). I do not question these critiques.
I simply follow the traditional understanding of the application of the diagonal method in
undecidability proofs such as Turing’s and Church’s. As the analyses in sections 5 and 6
will show, it is standard to analyse these proofs as proofs by contradiction that reduce to
absurdity the assumption that it is possible to define a decision function for FOL-provability
by applying the diagonal method as characterized by the features specified in Definition 4.4.
I discuss neither the relation of these proofs to other proofs using the diagonal method nor
the question of whether it is adequate to formalize diagonal arguments within a language
based on FOL.

It is, however, important to note that diagonalization is defined for expressions, not
functions. The intention of this distinction is to explicate the application of the diagonal
method to prove inexpressibility (or so-called ‘undefinability’) theorems, which is crucial to
the following discussion. One cannot assume that intended interpretations of an expression
of the form f(x) express a function if those intended interpretations are intended to apply
to diagonal cases. Even if the intended interpretation of expressions of the form f(x) is a
function, one cannot assume that this intended interpretation is also reliable in diagonal
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cases. The intention to interpret a function fn as, for example, g (defining the anti -diagonal
over an enumeration of functions f1, f2, . . .) fails due to its diagonalization: it does not
make sense to speak of a resulting diagonalized function since the result does not satisfy the
requirement that a function must assign one and only one value to each of its arguments.
Therefore, expressions of the form f(x) do not necessarily express a function; only their
reliable interpretations do. The function g is well defined only as a function that is not part
of the enumeration over which it is defined. However, there is no interpretation that maps
g onto a function fn due to diagonalization. The diagonal method proves the impossibility
of the intention to express a function in a certain way. Similarly, ‘x is not true’ and ‘x is
not a member of itself’ are not well-defined propositional functions if their diagonalizations
are intended to be interpreted as self-referential propositions.

For the discussion of the Church-Turing theorem, the extent to which one believes in the
possibility of reliable interpretations of diagonalized expressions is irrelevant. No general
claim about the reliability of intended interpretations involving ‘self-reference’ is assumed.
It is sufficient to acknowledge that the diagonal method is used to establish inexpressibility
theorems in terms of proofs by contradiction. Before turning to the discussion of Turing’s
and Church’s proofs, I will illustrate the application of the diagonal method to prove in-
expressibility theorems based on (i) the impossibility of expressing the halting function by
means of Turing machines and (ii) the impossibility of expressing arithmetic truth within
LA.

The impossibility of solving the halting function is an example of an inexpressibility
theorem concerning a language for expressing computable functions. It can be proven that
the halting function h(x) (which assigns a value of ‘1’ to codes x for Turing machines that
halt when started with x and a value of ‘2’ to codes x for Turing machines that do not halt
when started with x) is not expressible by any Turing-computable function. To show this, the
assumption that some Turing machine H can be interpreted as computing the function h(x)
is reduced to absurdity by considering a diagonal case. One way to consider such a diagonal
case is by considering a composition of a copy machine C, the assumed halting machine H
and a dithering machine D that halts iff it is not started with ‘1’ (cf. [Boolos et al. (2003)],
pp. 39f.). The dithering machine causes the result of H to be ‘inverted ’ (feature (i) of
Definition 4.4). The diagonal case arises from supposing that CHD is started with its own
number (feature (ii) of Definition 4.4). H cannot be interpreted as intended in this diagonal
case: if it assigns a value of ‘1’, D makes it such that CHD does not halt, and if it does not
assign a value of ‘1’, D makes it such that CHD halts. What is proven is the impossibility
of an interpretation: h(x) is well defined only so long as it is not assumed to be computable
since otherwise it would be capable of being diagonalized, which is incompatible with its
definition as a function. We cannot specify rules for a consistent interpretation of h(x) as
a Turing-computable function.

The proof of Tarski’s theorem is an example of an inexpressibility theorem concerning
a language for expressing propositional functions. It proves that the supposed proposi-
tional function ‘x is the Gödel number of an LA formula that is true according to =A’
(= TrueLA

(x)) is not expressible by an open formula in LA (for the following, cf., e.g.,
[Smith (2007)], section 21.5). The assumption that TrueLA

(x) is expressible in LA by an
open formula TA(x) yields a contradiction in the case of the diagonalization of its negation
¬TA(x) (cf. feature (i) in Definition 4.4). Let the Gödel numeral of ¬TA(x) be dLe; then,
by the Diagonalization Lemma, L↔ ¬TA(dLe) is provable in Q. If Q is sound (as assumed;
see p. 8 above), then L↔ ¬TA(dLe) is true according to =A. However, if TA(x) expresses
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TrueLA
(x), then TA(dLe) ↔ L is also true according to LA (cf. feature (ii) in Definition

4.4), which yields a contradiction. Given the Diagonalization Lemma and the soundness of
Q, this proof reduces to absurdity the assumption that TrueLA

(x) is expressible by TA(x)
within LA. The diagonal method shows that any intended interpretation of an open LA

formula ϕ(x) expressing TrueLa(A) is unreliable. Hence, ‘truth in LA’ is a well-defined
propositional function only so long as it is not the intended interpretation of an open LA

formula.
These proofs show how the diagonal method is used to prove that certain functions are

not expressible either within a language for expressing computable functions (= a language
of computation based on Turing machines or recursive functions) or within a language for
expressing propositional functions (= a logical language based on FOL). Undecidability
proofs for FOL combine both types of languages and consider a characteristic function
for FOL-provability. By the diagonal method, it is proven that the assumption that this
characteristic function is expressible in both the language of computation and the language
of logic yields a contradiction. Prima facie, this contradiction can be used only to reduce
the conjunction to absurdity. However, it is instead used to reduce the first conjunct, the
assumption of the decidability of FOL, to absurdity. The reason for reducing the first
conjunct to absurdity is the proof of a lemma (Turing) or a theorem (Church) that, roughly
speaking, states that any computable function is expressible within a language based on
FOL. This general claim justifies the specification to the assumed decision function Prov(x)
for FOL-provability and its expressibility in the form of a propositional function P (x): if
FOL were decidable, Prov(x) would be expressible as a propositional function P (x) even
in the case of the diagonalization of the propositional function ¬P (x). The truth of this
claim must be assumed to reduce the first (instead of the second) conjunction of the above
conjunct to absurdity. In the following sections, we will take a closer look at the proofs
of the corresponding lemma (in Turing’s proof) and theorem (in Church’s proof) and ask
whether these proofs indeed justify this specification.

5. Turing’s Proof

Two sorts of undecidability proofs can be distinguished: primary undecidability proofs,
which are not based on any other undecidability proof, and secondary undecidability proofs,
which are based on other undecidability proofs. The undecidability of the halting problem
is a primary undecidability proof: it directly refers to a diagonal case to show that it
is impossible to interpret any Turing-computable string function as the halting function.
Turing’s undecidability proof of FOL, in contrast, is a secondary undecidability proof. His
undecidability proof rests on the relation of some undecidable function concerning Turing
machines (i.e., the halting function) to a logical function of interest (i.e., a decision function
for FOL-provability).

To relate properties of Turing machines to properties of formulas, one must interpret
those formulas. To describe the instructions and configurations of Turing machines M , an
‘intended interpretation’ for the non-logical vocabulary in logical formulas is established.
For example, [Turing (1936)], pp. 259f., presents the following intended interpretations for
the atomic open formulas (‘function variables’, in his terminology) that he uses:

RSl
(x, y) is to be interpreted as ‘in the complete configuration x (of M), the

symbol on the square y is S’.
I(x, y) is to be interpreted as ‘in the complete configuration x, the square y
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is scanned’.
Kqm(x) is to be interpreted as ‘in the complete configuration x, the m-
configuration is qm’.
F (x, y) is to be interpreted as ‘y is the immediate successor of x’.

By ‘complete configuration’, Turing refers to what now is called the ‘state’ of a Turing ma-
chine M , while ‘m-configuration’ is Turing’s term for ‘configuration’. The details of Turing’s
intended interpretation, however, are not relevant to the following critique. What is impor-
tant is that Turing’s proof, as well as modern versions of it (cf., e.g., [Boolos et al. (2003)],
p. 127), is based on intended (or ‘standard’) interpretations using ordinary language with an
intended meaning. These interpretations are intended to map properties of Turing machines
to properties of logical formulas.

As Turing originally defined them, Turing machines start with an empty tape, and
‘bad’, circular machines are those that become stuck, while good, ‘non-circular machines’
never halt. In contrast, Turing machines as they have been defined since Post and Davis
start with a non-empty tape, and the ‘good’ ones are those that halt. These differences also
play no essential role in the following discussion. Thus, I will neglect to distinguish between
these different concepts of Turing machines.

All versions of Turing’s proof relate decision problems regarding the behaviour of Tur-
ing machines to the decision problem regarding properties of FOL formulas. It does not
matter which logical properties (such as FOL-provability, satisfiability or logical validity)
are considered since they are all interdefinable. This is why I discuss simply ‘the decidability
of FOL’, meaning that some logical property of FOL is decidable. Likewise, ‘the decision
problem’ is short for ‘the problem of whether some logical property is decidable’.

According to decision problems regarding the behaviour of Turing machines, any func-
tion concerning some non-trivial property of Turing machines can be chosen since they are
all undecidable according to Rice’s Theorem. Turing, for example, refers to the problem of
deciding whether a Turing machine ever prints the symbol ‘0’. Modern versions of Turing’s
proof intend to map the halting function onto an assumed decision function for FOL for-
mulas. Given such a mapping, the undecidability of FOL follows from the undecidability of
the corresponding decision problem for Turing machines.

To relate an undecidable problem concerning the behaviour of Turing machines to the
decision problem, a translation procedure is defined to translate the codes and configura-
tions of Turing machines into logical formulas (including some background theory). Such a
procedure is a purely syntactic exercise and is itself a computable string function. In the
following, I refer simply to ‘translations of Turing machines M ’, including the translations
concerning their configurations (e.g., the statement that M reaches a halting state at some
time), and following Turing, I abbreviate the corresponding formulas by Un(M). Given M
and its initial configuration, Un(M) can be computed. The question is whether a one-to-one
correlation can be established between the logical properties of Un(M) and the properties
of M due to the specified translation procedure.

Proving this one-to-one correlation is the crucial element of (all versions of) Turing’s
proof. This is done by proving a lemma that purports to prove that Un(M) is provable
(alternatively: true in all interpretations) iff M has the property in question, e.g., ever
printing ‘0’ or halting, (= Turing’s Lemma). The direction from right to left is proven by
relating each step of the behaviour of a Turing machine to an inferential, truth-preserving
step in a proof of Un(M) (= Lemma 1 ). I will relate my critique only to the direction
from left to right (= Lemma 2 ). The proof of this direction is very short and ‘easy’
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([Boolos et al. (2003)], p. 130). It is based on an intended interpretation of logical formulas
describing the configurations of the translated Turing machine. I quote the complete proof
of [Turing (1936)], p. 262:

Lemma 2. If Un(M) is provable, then S1 [i.e., the symbol ‘0’, T.L.] appears
on the tape in some complete configuration of M .

If we substitute any propositional functions for function variables in a
provable formula, we obtain a true proposition. In particular, if we substi-
tute the meanings tabulated on pp. 259-260 in Un(M), we obtain a true
proposition with the meaning ‘S1 appears somewhere on the tape in some
complete configuration of M ’.

Function variables is Turing’s term for open formulas, and propositional functions is
his term for instances (or intended interpretations) of open FOL formulas. The fact that he
uses the term ‘propositional functions’ shows that he does not question that any instance
or intended interpretation is, in fact, reliable. If one could assume that any instance or
intended interpretation of an open FOL formula is indeed a (well-defined) propositional
function, then he would be quite correct that any such instance or intended interpretation
of a provable formula would be true. However, this cannot be presumed, as shown by the
discussion in section 3 and the discussion of Tarski’s theorem. As his second sentences
makes evident, Turing, in fact, refers to intended interpretations of predicates used in
Un(M) (quoted above on p. 11), and he stipulates in the first sentence of his proof that
from the provability of a formula, the truth of its intended interpretation follows. Hence,
his ‘proof’ is a nice example of the fallacy of intended interpretations (cf. Definition 3.13).

Turing’s intended interpretation of Un(M) seems to be unproblematic as long as ap-
plied to normal (non-diagonal) cases. One might argue that, unlike in the case of paradoxes,
the question of reliability does not arise because Turing machines and their description are
well determined. However, this view poses a risk of succumbing to the fallacy of intended
interpretation. The question is whether the intended interpretations of Un(M) are also re-
liable in the diagonal cases that are relevant to the primary undecidability proofs on which
Turing’s proof is based. It was argued in section 3 that the unreliability of intended in-
terpretations may come as a surprise, contradicting semantic intuitions, and it was argued
in section 4 that the diagonal method is used to demonstrate that intended interpretations
do not, in fact, provide the interpretations = that they are intended to provide. No effec-
tive translation procedures for clear-cut concepts such as Turing machines nor the intuitive
evidence of the correctness of the translation in normal cases suffices to demonstrate the
correctness of the translation procedure in diagonal cases. Unreliable intended interpreta-
tions may well result from completely determined descriptions. Consider, for example, a
book consisting of well-formed sentences that are all interpreted as propositions capable of
being false or true. The sentences in such a book can be enumerated. Let the book contain
the sentence ‘Sentence number 27 is not true’, and suppose that this sentence itself is the
27th sentence of the book. The sentences in the book, their enumeration, sentences of the
form ‘Sentence number n is not true’ and the intended interpretation of provable formulas
of the form P ↔ P by means of sentences of the form ‘Sentence number n is not true’ are
all well determined, yet they still produce the Liar Paradox. More importantly, one cannot
conclude from the unproblematic referential relations of expressions established for typical
contexts that they still refer in the same way in atypical contexts such as intensional, meta-
language or tautological contexts. The question is whether diagonal contexts with intended
self-referential interpretations are, in fact, extensional contexts or whether they also should
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be classified as atypical, non-extensional contexts that do not permit inference from the
provability of formulas to the truth of their intended interpretations. Neither Turing nor
any modern version of his proof addresses the question of the reliability of the intended
interpretations in the relevant diagonal cases. For example, [Boolos et al. (2003)], p. 130,
presume without further argument that ‘truth in all interpretations’ (=) also applies to
their ‘standard interpretation’ (I), without considering the application of their standard
interpretation to diagonal cases.

However, if one considers FOL to be decidable, then diagonalization inevitably comes
into play as soon as a decision on logical properties is correlated with a decision on the
properties of Turing machines. According to the Turing thesis, the decidability of FOL
implies the existence of a Turing machine that computes a function that expresses a decision
function for FOL formulas. Let this Turing machine M be denoted by ‘FOL’ (in italics).
A primary undecidability proof, e.g., a proof of the undecidability of the halting problem,
directly applies to the hypothetical machine FOL if Turing’s Lemma, applied to the halting
problem, is assumed.

Let T be a translation machine that generates Un(M) (or its code) from two sequences
of strokes m and n: the first is a code for the input of the machine M , and the second codes
the instructions for M . According to Turing’s Lemma, the composition TFOL of T and
FOL would behave as a halting machine H since the decision on the provability of Un(M)
coincides with the decision on the halting of M with code n when started with m. Applying
the diagonal method, as in the case of the proof of the unsolvability of the halting problem,
we consider the composition CTFOLD of a copy machine C, a translation machine T , the
decision machine FOL and the dithering machine D. This yields a contradiction in the
diagonal case: the decision of FOL cannot be interpreted as a decision about the property
of the halting of CTFOLD when started with its own number.

This contradiction can be interpreted in two ways. Under the assumption of Turing’s
Lemma, one can reduce to absurdity the assumption that FOL exists (since C, T , and D
obviously exist). However, one may likewise reduce the lemma to absurdity and argue that
the diagonal case of CTFOLD when started with its own number shows that the intended
interpretation is not reliable in this special case. In the first interpretation, one questions
the expressibility of a decision function for FOL-provability by means of an assumed Turing
machine FOL. In the second interpretation, one questions the expressibility of the halting
function for Turing machines M by a propositional function Un(M) in the language of FOL.
In this interpretation, one would ‘withdraw the intended interpretation’ of the decision on
Un(M) in a diagonal case such as Un(CTFOLD) when started with its own number (cf.
RFM, p. 51e, §10). This is a straightforward conclusion since the proof of the lemma is
based on a fallacy. Thus, what is absurd according to this second interpretation is not the
assumption that FOL is decidable but instead the assumption that a decision on Un(M)
could be used to decide on the halting function (or some other uncomputable function).

Therefore, instead of rejecting the decidability of FOL by espousing the validity of the
mapping of functions concerning the behaviour of Turing machines onto an assumed decision
function for FOL by means of intended interpretations, one may reject the possibility of
expressing the behaviour of Turing machines by FOL expressions when diagonal cases are
involved. This rejection simply applies the proof of the impossibility of expressing the
halting function by a Turing-computable function to an assumed decision function for FOL-
provability: it is not the computability of the functions onto which the halting function is
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intended to be mapped that is called into question but rather the claim that such a mapping
is even possible in diagonal cases.

An undecidability proof of FOL must be based on a proof of a lemma that is independent
of FOL’s decidability. Versions of Turing’s proof do not satisfy this condition since they are
based on intended interpretations of Un(M) and these intended interpretations cannot obey
the semantics of FOL in the case that FOL is decidable. Therefore, Turing’s proof shows
only that either FOL is undecidable or properties of Turing machines cannot be expressed
by properties of Un(M). Thus, the proof is underdetermined.

The translation procedure for generating formulas Un(M) applies to Turing machines
in general. Turing’s proof assumes that this translation procedure is correct in any case,
meaning that the resulting intended interpretation of Un(M) does, in fact, express the
behaviour of the described Turing machine in any arbitrary case. This general claim justifies
the argument in the proof of Lemma 2. No special reasoning is provided that this general
claim, in fact, specifically applies to diagonal cases involving a machine FOL. However,
diagonal cases are designed to reduce correlations between functions to absurdity. Therefore,
special reasoning is needed to argue that a lemma that correlates a function concerning the
behaviour of Turing machines to a function deciding on a logical property of Un(M) holds
not merely in normal cases but also in diagonal cases involving FOL.

In such cases, a hypothetical decision function for FOL is assumed to be expressed
within FOL. Rejecting the intended interpretation of Un(M) in diagonal cases implies re-
jecting that FOL-provability is expressible within the language of FOL. This can be seen
from the diagonal case of CTFOLD started with its own number. In this case, FOL, which
is hypothesized to compute the characteristic function for FOL-provability, is started with
Un(CTFOLD), which implies the translation of FOL. This diagonal case makes it impos-
sible to simultaneously trust both what the supposed machine FOL, in fact, decides and
what it decides according to the intended interpretation of Un(CTFOLD). If FOL decides
that Un(CTFOLD) is provable, it, in fact, assigns the value ‘1’ to Un(CTFOLD); however,
since D halts only if not started with ‘1’, it must assign the value ‘2’ (or its code in stroke
notation) to Un(CTFOLD) according to the intended interpretation of Un(CTFOLD),
which states that CTFOLD halts when started with its own number. Thus, reducing the
correctness of the intended interpretation to absurdity (instead of reducing the assumption
of the existence of FOL to absurdity) implies rejecting the claim that it is possible to express
a decision function for FOL-provability within FOL. A decision function for FOL-provability
cannot be expressed within FOL since in the diagonal case, the intended interpretation of
such a formula implies a statement on the provability of the very formula that is reduced to
absurdity by the diagonal method since it necessarily contradicts the result of the supposed
decision machine in the diagonal case.

Turing’s proof is only indirectly concerned with the expression of FOL-provability within
FOL since it is a secondary undecidability proof that is related to some undecidable property
of Turing machines. By contrast, the following discussion of Church’s proof will be directly
concerned with the question of expressing provability within a language based on FOL.

6. Church’s Proof

While Turing’s proof is based on the concept of Turing machines, Church’s proof is based
on recursive functions. Turing’s proof rests on the undecidability of a decision problem for
Turing machines that is proven to be unsolvable independent of the technique for expressing
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properties of Turing machines by logical formulas. Church’s proof, in contrast, is not
similarly based on the undecidability of a decision problem for recursive functions that
can be proven independent of the technique for expressing recursive functions by logical
formulas.

Nevertheless, the key feature of both proofs is that the undecidability proof of FOL
rests on a technique for expressing computable functions within a language based on FOL.
While Turing’s proof rests on a translation procedure for expressing the behaviour of Turing
machines through logical formulas, Church’s proof rests on expressing recursive functions
by LA formulas (which are reducible to FOL formulas). I will argue that the proof of
the ‘theorem’ that every recursive function is expressible within LA suffers from a similar
deficiency as the proof of Turing’s Lemma.

For simplicity, I refer to modern versions of Church’s proof, in particular, to [Smith (2013)].
Church’s undecidability proof of FOL rests on a proof that the property of provability

in Robinson Arithmetic (Q) is undecidable (= undecidability of Q). Church argues that
if FOL is decidable, then Q is decidable. The proof of this implication is based on (i) the
translation of LA formulas into FOL formulas while preserving satisfiability and (ii) the
deduction theorem applied to the axioms of Q. The translation rules that eliminate the
function symbols (including ‘0’) and identity are defined by [Boolos et al. (2003)], chapter
19.4. These authors prove the correctness of the translation procedure by proving their
propositions 19.12 and 19.13 (cf. [Boolos et al. (2003)], pp. 256 and 257). The proofs of
these propositions are plain and unproblematic.

One might classify Church’s undecidability proof as a secondary proof since it is based
on the undecidability of provability in Q. However, this analogy to the classification of
Turing’s proof as a secondary proof is misleading with regard to the critique of Turing’s
proof in the previous section. While the reduction of the decision problem to a decision
problem for Turing machines is problematic, the reduction of the undecidability of FOL to
the undecidability of Q is, in contrast, rather trivial. It does not concern the relation of
a language based on FOL to a language of computable functions (in Church’s case, recur-
sive functions) but rather concerns the relation of a language based on FOL (in Church’s
case, LA) to FOL. If FOL is decidable, then indeed, Q is also decidable. Instead it is the
expressibility of recursive functions in LA, on which the undecidability proof of Q is based,
that involves a problem similar to that of Turing’s proof. The undecidability proof of Q di-
rectly concerns the possibility of expressing an assumed recursive function for Q-provability
in LA and capturing it in Q. Since LA is reducible to FOL and since provability in Q is
reducible to provability in FOL, this proof therefore concerns the possibility of expressing
FOL-provability within FOL.

Similar to Turing’s proof, which is based on a procedure for translating Turing ma-
chines and their configurations into FOL formulas, Church’s proof is based on a procedure
for translating (canonically) defined recursive functions into LA formulas. The resulting
open LA formulas are of the rather simple Σ1 type (i.e., a prenex normal form with only
unbounded existential quantifiers). Recursive properties can be defined by means of their
characteristic functions. Thus, given a recursive property f(x), one can generate a Σ1

expression that expresses and captures the recursive property, given that the translation
procedure indeed achieves the purpose for which it is designed.

I call ¬P (dγe) the diagonal case of P (x), where P (x) denotes the supposed Σ1-type
propositional function that expresses and captures a presumed recursive property Prov(x)
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defined by a characteristic recursive function that is isomorphic to a decision function for
Q-provability (implying a decision function for FOL-provability).

According to the Church thesis, the assumption that FOL (and, consequently, Q) is
decidable implies that a decision function for FOL (and, consequently Q) can be mapped
onto a recursive function. As in Turing’s proof, the assumption that FOL is decidable
is unproblematic as long as it is not related to any diagonal case. In Church’s proof,
diagonalization comes into the play only when (i) expressing recursive functions within the
language of LA and (ii) considering diagonalization within LA.

Given the Diagonalization Lemma and the consistency of Q (cf. Definition 4.2 and
p. 8), the diagonal case immediately shows that Prov(x) cannot exist if Prov(x) is to
be expressed and, moreover, captured by P (x). This conclusion follows trivially from the
following three assumptions (cf. [Smith (2013)], p. 183):

Assumption 1: Q ` γ ↔ ¬P (dγe).
Assumption 2: If Q ` γ, i.e., Prov(dγe), then Q ` P (dγe).
Assumption 3: If Q 6` γ, i.e., not-Prov(dγe), then Q ` ¬P (dγe).

Assumption 1 applies the Diagonalization Lemma to ¬P (x), Assumptions 2 and 3 follow
from the assumption that P (x) captures the presumed recursive property Prov(x). Assump-
tions 1 to 3 together imply a contradiction. Thus, if Q is consistent and the Diagonalization
Lemma holds, then P (x) cannot capture a presumed recursive property Prov(x). A similar
argument can be presented on the basis that Q is sound and P (x) expresses Prov(x).

The derived contradiction either can reduce to absurdity the assumption that FOL-
provability and, consequently, Q-provability is recursively definable or can reduce to absur-
dity the claim that the presumed recursive property Prov(x) is expressed and captured by
the open formula P (x) resulting from the translation procedure. In the latter case, Church’s
proof is interpreted not as an undecidability proof but as analogous to the proofs of un-
definability theorems, such as the proof of Tarski’s theorem. Church, however, advocates
for the first option on the basis of the general theorems that (i) any recursive property
is expressible within LA (the expressing theorem) and (ii) any recursive property can be
captured within Q (the capturing theorem). The latter theorem is based on the former. I
focus on the former since it is this theorem and its proof that can be questioned in a manner
similar to the critique of Turing’s Lemma.

The procedure for translating the canonical definitions of recursive functions into LA

formulas is itself computable. The crucial question is whether this translation procedure is
correct in the sense that it indeed results in formulas that express the translated recursive
functions and properties. The proof of the expressing theorem does not prove this rigorously.
Instead, it consists of specifying a translation procedure and simply appealing to semantic
evidence to argue for its correctness. Smith’s proof nicely illustrates this.

The proof of the expressing theorem for recursive functions proves the theorem for the
initial functions, for the composition of recursive functions, for primitive recursion and for
minimization (cf. [Smith (2013)], chapter 15 and p. 297). The question of the criterion
for the correctness of the translation procedure already arises in the simplest case of the
translations of the initial functions. Smith’s proof of the expressing theorem starts with
proving the theorem for these functions. I quote the complete proof for the successor and
zero functions from [Smith (2013)], p. 110:

Proof for (1) There are three easy cases to consider:
i. The successor function Sx = y is expressed by the open wff Sx = y.
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ii. The zero function Z(x) = 0 is expressed by the wff Z(x, y) =def (x = x ∧ y = 0).

In contrast to the tricky case of expressing recursion, the translation procedure is ‘triv-
ial’ ([Smith (2007)], p. 110) in the case of the initial functions. In this case, its correctness
seems to be plain and unquestionable. However, it is interesting to note that the proof, in
fact, consists of prescribing how the functions are to be translated without explicitly stating
why the translation is correct. The answer to this question must relate the recursively de-
fined functions to the arithmetic interpretation =A of the propositional functions in LA. =A

assigns truth values to propositional functions for given instances of their arguments. The
translation of a recursively defined function f(x) = y into a propositional function φ(x, y) is
correct iff for all m and n, φ(m,n) is true according to =A iff f(m) = n (cf. [Smith (2013)],
p. 43). How can one know that this is the case?

To answer this question, one must answer the following questions: (i) How can one gain
knowledge of the truth values of φ(x, y) for specific values m and n? (ii) How can one know
that the truth values of =A(φ(m,n)) correspond to the computation of f(m) = n? (iii)
How can one know the answers for all of the infinite number of possible values?

With regard to (i), one cannot refer to provability within Q to justify the truth value
of =A(φ(m,n)) since Q is justified by its soundness and the capturing theorem is based on
the expressing theorem: the syntax is measured by the presumed semantics, not the other
way round. So, one must simply accept the truth values of LA formulas according to =A

as primitives (as emphasized by [Smith (2013)], section 5.3). Furthermore, we do not know
the truth values of the arithmetical interpretation =A of LA formulas in non-trivial cases.
Thus, we cannot justify or control the translation procedure in such cases by independently
comparing truth values.

The same argument applies regarding the second question. We might think to run a
computation and compare the result of what the computation does with the truth value of
what the corresponding LA proposition says according to =A. However, let us ignore any
specific problems with this method since it cannot be effective in any case because of (iii):
it is obvious that we cannot justify any general answer on the basis of specific values.

What we, in fact, do in justifying the correctness of the translation procedure is to relate
paraphrases or intended interpretations of the relation between x and y in the recursively
defined function to paraphrases or intended interpretations of the LA expression φ(x, y). In
doing so, one relates intended interpretations of the recursively defined functions in terms
of number-theoretic (or arithmetic) extensional functions to the extensional understanding
of the arithmetic interpretation =A of the corresponding propositional LA functions.5 In
the ‘Proof for (1)’ quoted above, for example, Smith interprets Sx = y as the successor
function and Z(x) = 0 as the zero function: this is a number-theoretic interpretation since
the values of the variables are numbers and not, e.g., symbols, and it is extensional since
it does not matter how the values of the functions are assigned to their arguments. Such
an interpretation is, indeed, best suited to be compared with the interpretation =A of the
corresponding propositional functions. In the case of Sx = y and Sx = y, one must judge
that ‘y is assigned to the successor to x’ is true iff ‘y is equal to the successor of x’ is true.
In the case of the zero function, one must compare ‘0 is assigned to x’ and ‘x is identical
to itself and y equals 0’. The translation is correct iff the two paraphrases are coextensive.
Note that the paraphrases depend on the syntax of the paraphrased expressions and differ

5Cf. the ‘remarks about extensionality’ by [Smith (2007)], pp. 29f., pp. 34f. and 35ff., and [Smith (2013)],
chapter 14.4.
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Recursive Def. LA Formalization

0! = 1

(Sx)! = x!× Sx

Table 1: Translation of the Factorial Function into a Propositional LA Function

to a greater extent as the expressions to be paraphrased become more complex. Consider,
for example, the still rather ‘easy’ case of the translation of the factorial function into a
Σ1 formula, as presented in Table 1. The paraphrases of the expressions already differ
significantly since the syntax of each paraphrased expression is completely different. The
similarity of the paraphrases in the case of the successor function is an exception in this
respect.

The assertion that the paraphrases of the initial functions are coextensive is, of course,
rather trivial and beyond doubt when one takes the underlying semantics for granted.
However, the implications of the method of evaluating the correctness of the translation are
important: the ‘criteria’ for correctness are judgements concerning the coextensionality of
intended paraphrases or interpretations. This method is not only the implicit method used
in the proof of the initial functions; the same method is applied in the cases of composition,
recursion and minimization, both by Smith and in alternative proofs of the expressing the-
orem. These proofs basically consist of defining how the recursive functions are translated;
if the correctness of the translation procedure is addressed at all, then nothing more is done
than to appeal to evidence based on one’s semantic intuitions. Smith, for example, ends
his translation of the factorial function into the formula given in Table 1 with the following
emphatic statement: ‘For this evidently expresses the factorial function’ (my emphasis).
Likewise, he ultimately ‘proves’ that the described procedure works in any arbitrary case
by presenting a general translation schema ϕ and asserting that ‘it is then evident that ϕ
will serve to express the p.r. defined function f ’ ([Smith (2013)], p. 118, my emphasis).
In the case of minimization, he again simply defines how minimization is translated into
Σ1 formulas and simply avows that this ‘evidently expresses’ ([Smith (2007)], p. 277, my
emphasis)6 the function defined by minimization. Smith’s proof is in no way less explicit
than others, nor does it differ in method from other proofs of the expressing theorem. On
the contrary, his proof is admirably clear and understandable.

My point of critique concerns not the complexity of the translation procedure but its
application to hypothetical diagonal cases. I have no doubt that recursive functions such as
the factorial function can be expressed and captured by the translation procedure. However,
the question is whether it can be justified that such a procedure is correct in any arbitrary
case, including the hypothetical case of a recursive definition of Q- or FOL-provability. Such
a case inevitably results in a contradiction due to the diagonal context. Any generalization

6Cf. [Smith (2013)], p. 297: ‘Intuitively, F expresses f ; i.e. f(m) = n iff F (m,n) is true (think about
it!).’
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of the evidence gained from rather trivial, non-diagonal cases to arbitrary cases presumes
a similarity between those cases. However, diagonal cases giving rise to contradictions are
not similar to non-diagonal cases, which alone are addressed when appealing to semantic
intuitions. This is why any sort of purported inductive proof concerns only the generality
of the specified translation procedure and not its correctness.

According to the defined translation procedure, a presumed recursive property Prov(x)
can be related to a propositional function P (x). The proof of the expressing theorem nei-
ther proves nor provides any evidence that P (x) would indeed express Prov(x) given that
Prov(x) exists. In this hypothetical case, the method of judging upon the equivalence of
intended interpretations necessarily fails. By hypothesis, any intended interpretation of
Prov(dγe) must (i) be coextensive with ‘the formula with number γ (i.e., ¬P (dγe)) is prov-
able’ and (ii) be expressed by P (dγe). The interpretation =A of P (dγe), however, cannot
be coextensive with ‘the formula with number γ (i.e., ¬P (dγe)) is provable’ if Q is sound.

Of course, one can argue that this contradiction reduces the hypothetical assumption
that Q-provability is recursively definable by Prov(x) to absurdity. However, this argument
is not conclusive because for it to be conclusive, it would be necessary to show that Prov(x)
would be expressible by P (x) if Prov(x) were to exist. In short, undecidability is shown only
by independently proving expressibility; otherwise, one may likewise reduce to absurdity
the assumption that LA is capable of expressing Q-provability or, more fundamentally, that
FOL is capable of expressing FOL-provability.

Proofs of the expressing theorem do not explicitly address the question of how to prove
the theorem for hypothetical diagonal cases. If this question is addressed, it becomes clear
that any undecidability proof begs the question. Undecidability proofs, in fact, demonstrate
that a diagonal case rules out the possibility of expressing and capturing the property in
question. How can one justify that the expressing theorem holds for all recursively defined
properties without presuming that any property that is demonstrably not expressible in LA

is not recursive? Circularity can be avoided only if it is conceded that the undecidability
proof is underdetermined; under the assumption that Q is consistent, the diagonal case
shows either that Q- and, consequently, FOL-provability cannot be defined recursively or
that FOL-provability is not expressible within LA and, consequently, FOL due to the di-
agonal case. Semantic evidence cannot settle the matter since our semantic intuitions are
derived from normal cases that we can oversee and control.

Diagonal cases as considered in paradoxes such as the Liar Paradox, Russell’s Paradox
or Richards’ Paradox show that our semantic intuitions are not reliable. Undecidability
proofs resting on the technique for expressing diagonal cases in the language of logic do
not prove that it is indeed possible in diagonal cases to express what one intends to say by
means of the language of logic. The use of the diagonal method to prove theorems such as
the unsolvability of the halting problem or Tarski’s theorem and paradoxes such as the Liar
Paradox or Richards’ Paradox cast doubt on the use of the diagonal method to establish the
undecidability of FOL. Interpreting Turing’s and Church’s proofs as undefinability proofs
for FOL-provability within FOL is a straightforward alternative.

7. Conclusion

In addition to Turing’s and Church’s canonical proofs, many other versions of undecidability
proofs of FOL (or fragments thereof) exist at present (cf.
[Boerger et al.(2001)]). However, all of these undecidability proofs rest on the expression
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of undecidable problems within FOL and ultimately invoke diagonal cases. Any proof that
it is possible to express undecidable problems within FOL is based on a claim of the gen-
eral validity of translation procedures that encounter semantic problems in diagonal cases.
Rigorous proofs concerning the possibility of defining a decision procedure for FOL should
not be affected by such semantic problems. Instead of making a hopeless attempt to prove
strong general claims concerning the expressibility of supposed functions within a language
based on FOL, it would be more fruitful to attempt to solve the decision problem. Such
an attempt concerns the possibility of algorithmizing the application of rules of a correct
and complete calculus such that not only theoremhood but also non-theoremhood can be
decided within a finite number of steps. This effort to seek a positive solution to the decision
problem is not affected by problems arising from attempting to express the limits of logic
within the language of logic. Whatever may result from this work, it can only increase our
power to decide first-order logic formulas.
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[Boerger et al.(2001)] Börger, E., Grädel, E. & Gurevich, Y.: The Classical Decision Problem, Springer.
[Boker & Dershowitz (2008)] Boker, U. and Dershowitz, N.: ‘The Church-Turing Thesis over Arbitrary

Domains’, in: Avron, Dershowitz, Rabinovich (eds.), Pillars of Computer Science, Springer, Berlin,
199-229.

[Brun(2003)] Brun, G. (2003). Die richtige Formel. Philosophische Probleme der logischen Formalisierung.
Frankfurt: Ontos.

[Dreben (1979)] Dreben, B., Goldfarb, W.D.: The Decision Problem. Solvable Classes of Quantificational
Formulas, Addison-Wesley, London.
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